TY - JOUR
T1 - Nanohybrid electro-coatings toward therapeutic implants with controlled drug delivery potential for bone regeneration
AU - Patel, Kapil D.
AU - Singh, Rajendra K.
AU - Mahapatra, Chinmaya
AU - Lee, Eun Jung
AU - Kim, Hae Won
N1 - Publisher Copyright:
Copyright © 2016 American Scientific Publishers All rights reserved.
PY - 2016/10
Y1 - 2016/10
N2 - Coatings of metallic implants facilitate a new bioactive interface that favors osteogenic responses and bone formation. Providing a therapeutic capacity to the coatings, involving with a sustainable and controllable delivery of drug molecules, significantly improves the bone regenerative potential. Here we design a novel nanocomposite coating, made of mesoporous silica-shelled hydroxyapatite (MS-HA) nanoparticles and chitosan (Chi), incorporating osteogenic drug dexamethasone phosphate (Dex(P)) within the MS-HA, by the process of an electrophoretic deposition (EPD). MS-HA, produced by a sol-gel reaction of silica onto an HA nanorod, exhibited mono-dispersed core-shell nanoparticles with a size of ∼40 nm and a shell thickness of ∼25 nm. The highly mesoporous structure enabled an effective loading of Dex(P) onto the nanocarriers, showing a loading capacity as high as 15% by weight. The Dex(P) loaded MS-HA were homogenized with Chi in acidic ethanol/water to allow for the EPD process. Nanocomposite coatings were produced well, forming thicknesses a few micrometers largely tunable with EPD parameters and exhibiting MS-HA nanoparticles evenly distributed within Chi matrix. While Dex(P) release from the bare MS-HA nanocarrier was very abrupt, showing a complete release within 24 h, the Dex(P) release from the nanocomposite coatings profiled a highly sustainable pattern over a month. Rat mesenchymal stem cells cultured on the Dex(P)-releasing coatings were substantially stimulated to an osteoblastic lineage, presenting enhanced alkaline phosphate activity and higher levels of osteogenic genes, with respect to coatings free of Dex(P). An indirect culture test also confirmed the long-term release effects of Dex(P) from the coatings over 4 weeks. The currently-developed nanocomposite EPD coatings, with a capacity to load osteogenic drug at large quantity and to deliver for a long-term period, are considered as a promising therapeutic coating platform for metallic bone implants.
AB - Coatings of metallic implants facilitate a new bioactive interface that favors osteogenic responses and bone formation. Providing a therapeutic capacity to the coatings, involving with a sustainable and controllable delivery of drug molecules, significantly improves the bone regenerative potential. Here we design a novel nanocomposite coating, made of mesoporous silica-shelled hydroxyapatite (MS-HA) nanoparticles and chitosan (Chi), incorporating osteogenic drug dexamethasone phosphate (Dex(P)) within the MS-HA, by the process of an electrophoretic deposition (EPD). MS-HA, produced by a sol-gel reaction of silica onto an HA nanorod, exhibited mono-dispersed core-shell nanoparticles with a size of ∼40 nm and a shell thickness of ∼25 nm. The highly mesoporous structure enabled an effective loading of Dex(P) onto the nanocarriers, showing a loading capacity as high as 15% by weight. The Dex(P) loaded MS-HA were homogenized with Chi in acidic ethanol/water to allow for the EPD process. Nanocomposite coatings were produced well, forming thicknesses a few micrometers largely tunable with EPD parameters and exhibiting MS-HA nanoparticles evenly distributed within Chi matrix. While Dex(P) release from the bare MS-HA nanocarrier was very abrupt, showing a complete release within 24 h, the Dex(P) release from the nanocomposite coatings profiled a highly sustainable pattern over a month. Rat mesenchymal stem cells cultured on the Dex(P)-releasing coatings were substantially stimulated to an osteoblastic lineage, presenting enhanced alkaline phosphate activity and higher levels of osteogenic genes, with respect to coatings free of Dex(P). An indirect culture test also confirmed the long-term release effects of Dex(P) from the coatings over 4 weeks. The currently-developed nanocomposite EPD coatings, with a capacity to load osteogenic drug at large quantity and to deliver for a long-term period, are considered as a promising therapeutic coating platform for metallic bone implants.
KW - Bone Regeneration
KW - Drug Delivery
KW - Electrophoretic Deposition
KW - Osteogenic Potential
KW - Therapeutic Coatings
UR - http://www.scopus.com/inward/record.url?scp=84990871979&partnerID=8YFLogxK
U2 - 10.1166/jbn.2016.2301
DO - 10.1166/jbn.2016.2301
M3 - Article
C2 - 29359903
AN - SCOPUS:84990871979
SN - 1550-7033
VL - 12
SP - 1876
EP - 1889
JO - Journal of Biomedical Nanotechnology
JF - Journal of Biomedical Nanotechnology
IS - 10
ER -