Abstract
Ferroelectric nanostructures have broad applications in nanoscale electronic devices, sensors and actuators. In this study, a two-step electrospinning process was used to fabricate barium titanate (BaTiO3)/polyvinylidene fluoride (PVDF) composite fibers. Microstructure examination showed that BaTiO3 fibers were well-dispersed within the PVDF fiber matrix and aligned along the fiber axis. X-ray diffraction (XRD) study revealed that crystalline phases corresponding to both PVDF and BaTiO3 were found. The domain switching and associated ferro-/piezo-electric properties of the BaTiO3-PVDF fibers were characterized. Polarization-electric field hysteresis loops obtained using piezoresponse force microscopy (PFM) confirmed the polar domain switching behavior of the fibers. Distinct strain-electric field hysteresis loops were also recorded. Hence, the fibers exhibited well-defined piezoelectric and ferroelectric properties. The results show the potential of these nanostructured composite fibers for applications in miniaturized electronic devices and sensors.
Original language | English |
---|---|
Pages (from-to) | 1435-1440 |
Number of pages | 6 |
Journal | Composites Science and Technology |
Volume | 71 |
Issue number | 11 |
DOIs | |
Publication status | Published - 28 Jul 2011 |