Negative Neuroplasticity in Chronic Traumatic Brain Injury and Implications for Neurorehabilitation

Jennifer C. Tomaszczyk, Nathaniel L. Green, Diana Frasca, Brenda Colella, Gary R. Turner, Bruce K. Christensen, Robin E.A. Green*

*Corresponding author for this work

    Research output: Contribution to journalReview articlepeer-review

    52 Citations (Scopus)

    Abstract

    Based on growing findings of brain volume loss and deleterious white matter alterations during the chronic stages of injury, researchers posit that moderate-severe traumatic brain injury (TBI) may act to “age” the brain by reducing reserve capacity and inducing neurodegeneration. Evidence that these changes correlate with poorer cognitive and functional outcomes corroborates this progressive characterization of chronic TBI. Borrowing from a framework developed to explain cognitive aging (Mahncke et al., Progress in Brain Research, 157, 81–109, 2006a; Mahncke et al., Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12523–12528, 2006b), we suggest here that environmental factors (specifically environmental impoverishment and cognitive disuse) contribute to a downward spiral of negative neuroplastic change that may modulate the brain changes described above. In this context, we review new literature supporting the original aging framework, and its extrapolation to chronic TBI. We conclude that negative neuroplasticity may be one of the mechanisms underlying cognitive and neural decline in chronic TBI, but that there are a number of points of intervention that would permit mitigation of this decline and better long-term clinical outcomes.

    Original languageEnglish
    Pages (from-to)409-427
    Number of pages19
    JournalNeuropsychology Review
    Volume24
    Issue number4
    DOIs
    Publication statusPublished - 2014

    Fingerprint

    Dive into the research topics of 'Negative Neuroplasticity in Chronic Traumatic Brain Injury and Implications for Neurorehabilitation'. Together they form a unique fingerprint.

    Cite this