NEURAL SDF FLOW FOR 3D RECONSTRUCTION OF DYNAMIC SCENES

Wei Mao, Richard Hartley, Mathieu Salzmann, Miaomiao Liu

Research output: Contribution to conferencePaperpeer-review

Abstract

In this paper, we tackle the problem of 3D reconstruction of dynamic scenes from multi-view videos. Previous dynamic scene reconstruction works either attempt to model the motion of 3D points in space, which constrains them to handle a single articulated object or require depth maps as input. By contrast, we propose to directly estimate the change of Signed Distance Function (SDF), namely SDF flow, of the dynamic scene. We show that the SDF flow captures the evolution of the scene surface. We further derive the mathematical relation between the SDF flow and the scene flow, which allows us to calculate the scene flow from the SDF flow analytically by solving linear equations. Our experiments on real-world multi-view video datasets show that our reconstructions are better than those of the state-of-the-art methods. Our code is available at https://github.com/wei-mao-2019/SDFFlow.git.

Original languageEnglish
Publication statusPublished - 2024
Event12th International Conference on Learning Representations, ICLR 2024 - Hybrid, Vienna, Austria
Duration: 7 May 202411 May 2024

Conference

Conference12th International Conference on Learning Representations, ICLR 2024
Country/TerritoryAustria
CityHybrid, Vienna
Period7/05/2411/05/24

Fingerprint

Dive into the research topics of 'NEURAL SDF FLOW FOR 3D RECONSTRUCTION OF DYNAMIC SCENES'. Together they form a unique fingerprint.

Cite this