TY - GEN
T1 - New fit of thermal neutron constants (TNC) for 233,235U, 239,241Pu and 252Cf(sf)
T2 - 2016 International Conference on Nuclear Data for Science and Technology, ND 2016
AU - Pronyaev, Vladimir G.
AU - Capote, Roberto
AU - Trkov, Andrej
AU - Noguere, Gilles
AU - Wallner, Anton
N1 - Publisher Copyright:
© The Authors, published by EDP Sciences, 2017.
PY - 2017/9/13
Y1 - 2017/9/13
N2 - An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC) evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf) are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986) was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data) and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data). Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.
AB - An IAEA project to update the Neutron Standards is near completion. Traditionally, the Thermal Neutron Constants (TNC) evaluated data by Axton for thermal-neutron scattering, capture and fission on four fissile nuclei and the total nu-bar of 252Cf(sf) are used as input in the combined least-square fit with neutron cross section standards. The evaluation by Axton (1986) was based on a least-square fit of both thermal-spectrum averaged cross sections (Maxwellian data) and microscopic cross sections at 2200 m/s. There is a second Axton evaluation based exclusively on measured microscopic cross sections at 2200 m/s (excluding Maxwellian data). Both evaluations disagree within quoted uncertainties for fission and capture cross sections and total multiplicities of uranium isotopes. There are two factors, which may lead to such difference: Westcott g-factors with estimated 0.2% uncertainties used in the Axton's fit, and deviation of the thermal spectra from Maxwellian shape. To exclude or mitigate the impact of these factors, a new combined GMA fit of standards was undertaken with Axton's TNC evaluation based on 2200 m/s data used as a prior. New microscopic data at the thermal point, available since 1986, were added to the combined fit. Additionally, an independent evaluation of TNC was undertaken using CONRAD code. Both GMA and CONRAD results are consistent within quoted uncertainties. New evaluation shows a small increase of fission and capture thermal cross sections, and a corresponding decrease in evaluated thermal nubar for uranium isotopes and 239Pu.
UR - http://www.scopus.com/inward/record.url?scp=85030483088&partnerID=8YFLogxK
U2 - 10.1051/epjconf/201714602045
DO - 10.1051/epjconf/201714602045
M3 - Conference contribution
T3 - EPJ Web of Conferences
BT - ND 2016
A2 - Siegler, Peter
A2 - Mondelaers, Wim
A2 - Plompen, Arjan
A2 - Hambsch, Franz-Josef
A2 - Schillebeeckx, Peter
A2 - Kopecky, Stefan
A2 - Heyse, Jan
A2 - Oberstedt, Stephan
PB - EDP Sciences
Y2 - 11 September 2016 through 16 September 2016
ER -