TY - JOUR
T1 - New insights into large tropical tree mass and structure from direct harvest and terrestrial lidar
AU - Burt, Andrew
AU - Boni Vicari, Matheus
AU - Da Costa, Antonio C.L.
AU - Coughlin, Ingrid
AU - Meir, Patrick
AU - Rowland, Lucy
AU - Disney, Mathias
N1 - Publisher Copyright:
© 2021 The Authors.
PY - 2021/2
Y1 - 2021/2
N2 - A large portion of the terrestrial vegetation carbon stock is stored in the above-ground biomass (AGB) of tropical forests, but the exact amount remains uncertain, partly owing to the lack of measurements. To date, accessible peer-reviewed data are available for just 10 large tropical trees in the Amazon that have been harvested and directly measured entirely via weighing. Here, we harvested four large tropical rainforest trees (stem diameter: 0.6-1.2 m, height: 30-46 m, AGB: 3960-18 584 kg) in intact old-growth forest in East Amazonia, and measured above-ground green mass, moisture content and woody tissue density. We first present rare ecological insights provided by these data, including unsystematic intra-tree variations in density, with both height and radius. We also found the majority of AGB was usually found in the crown, but varied from 42 to 62%. We then compare non-destructive approaches for estimating the AGB of these trees, using both classical allometry and new lidar-based methods. Terrestrial lidar point clouds were collected pre-harvest, on which we fitted cylinders to model woody structure, enabling retrieval of volume-derived AGB. Estimates from this approach were more accurate than allometric counterparts (mean tree-scale relative error: 3% versus 15%), and error decreased when up-scaling to the cumulative AGB of the four trees (1% versus 15%). Furthermore, while allometric error increased fourfold with tree size over the diameter range, lidar error remained constant. This suggests error in these lidar-derived estimates is random and additive. Were these results transferable across forest scenes, terrestrial lidar methods would reduce uncertainty in stand-scale AGB estimates, and therefore advance our understanding of the role of tropical forests in the global carbon cycle.
AB - A large portion of the terrestrial vegetation carbon stock is stored in the above-ground biomass (AGB) of tropical forests, but the exact amount remains uncertain, partly owing to the lack of measurements. To date, accessible peer-reviewed data are available for just 10 large tropical trees in the Amazon that have been harvested and directly measured entirely via weighing. Here, we harvested four large tropical rainforest trees (stem diameter: 0.6-1.2 m, height: 30-46 m, AGB: 3960-18 584 kg) in intact old-growth forest in East Amazonia, and measured above-ground green mass, moisture content and woody tissue density. We first present rare ecological insights provided by these data, including unsystematic intra-tree variations in density, with both height and radius. We also found the majority of AGB was usually found in the crown, but varied from 42 to 62%. We then compare non-destructive approaches for estimating the AGB of these trees, using both classical allometry and new lidar-based methods. Terrestrial lidar point clouds were collected pre-harvest, on which we fitted cylinders to model woody structure, enabling retrieval of volume-derived AGB. Estimates from this approach were more accurate than allometric counterparts (mean tree-scale relative error: 3% versus 15%), and error decreased when up-scaling to the cumulative AGB of the four trees (1% versus 15%). Furthermore, while allometric error increased fourfold with tree size over the diameter range, lidar error remained constant. This suggests error in these lidar-derived estimates is random and additive. Were these results transferable across forest scenes, terrestrial lidar methods would reduce uncertainty in stand-scale AGB estimates, and therefore advance our understanding of the role of tropical forests in the global carbon cycle.
KW - above-ground biomass
KW - allometry
KW - destructive harvest
KW - terrestrial lidar
KW - tree structure
KW - tropical forests
UR - http://www.scopus.com/inward/record.url?scp=85103031360&partnerID=8YFLogxK
U2 - 10.1098/rsos.201458
DO - 10.1098/rsos.201458
M3 - Article
SN - 2054-5703
VL - 8
JO - Royal Society Open Science
JF - Royal Society Open Science
IS - 2
M1 - 201458
ER -