TY - JOUR
T1 - No evidence from FTIR difference spectroscopy that glutamate-189 of the D1 polypeptide ligates a Mn ion that undergoes oxidation during the S0 to S1, S1 to S2, or S2 to S 3 transitions in photosystem II
AU - Strickler, Melodie A.
AU - Hillier, Warwick
AU - Debus, Richard J.
PY - 2006/7/25
Y1 - 2006/7/25
N2 - In the recent X-ray crystallographic structural models of photosystem II, Glu189 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn4 cluster. To determine if D1-Glu189 ligates a Mn ion that undergoes oxidation during one or more of the S0 → S 1, S1 → S2, and S2 → S3 transitions, the FTIR difference spectra of the individual S-state transitions in D1-E189Q and D1-E189R mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that neither mutation significantly alters the mid-frequency regions (1800-1200 cm-1) of any of the FTIR difference spectra. Importantly, neither mutation eliminates any specific symmetric or asymmetric carboxylate stretching mode that might have been assigned to D1-Glu189. The small spectral alterations that are observed are similar in amplitude to those that are observed in wild-type PSII particles that have been exchanged into FTIR analysis buffer by different methods or those that are observed in D2-H189Q mutant PSII particles (the residue D2-His189 is located >25 Å from the Mn4 cluster and accepts a hydrogen bond from Tyr YD). The absence of significant mutation-induced spectral alterations in the D1-Glu189 mutants shows that the oxidation of the Mn4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Glu189 during the S0 → S1, S1 → S2, or S2 → S3 transitions. One explanation of these data is that D1-Glu189 ligates a Mn ion that does not increase its charge or oxidation state during any of these S-state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Glu189 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn4 cluster during the S1 → S2 transition be localized on the Mn ion that is ligated by the α-COO- group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn4 cluster during the S0 → S1 and S2 → S3 transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Glu189, or D1-Ala344. An alternative explanation of the FTIR data is that D1-Glu189 does not ligate the Mn4 cluster. This conclusion would be consistent with earlier spectroscopic analyses of D1-Glu189 mutants, but would require that the proximity of D1-Glu189 to manganese in the X-ray crystallographic structural models be an artifact of the radiation-induced reduction of the Mn4 cluster that occurred during the collection of the X-ray diffraction data.
AB - In the recent X-ray crystallographic structural models of photosystem II, Glu189 of the D1 polypeptide is assigned as a ligand of the oxygen-evolving Mn4 cluster. To determine if D1-Glu189 ligates a Mn ion that undergoes oxidation during one or more of the S0 → S 1, S1 → S2, and S2 → S3 transitions, the FTIR difference spectra of the individual S-state transitions in D1-E189Q and D1-E189R mutant PSII particles from the cyanobacterium Synechocystis sp. PCC 6803 were compared with those in wild-type PSII particles. Remarkably, the data show that neither mutation significantly alters the mid-frequency regions (1800-1200 cm-1) of any of the FTIR difference spectra. Importantly, neither mutation eliminates any specific symmetric or asymmetric carboxylate stretching mode that might have been assigned to D1-Glu189. The small spectral alterations that are observed are similar in amplitude to those that are observed in wild-type PSII particles that have been exchanged into FTIR analysis buffer by different methods or those that are observed in D2-H189Q mutant PSII particles (the residue D2-His189 is located >25 Å from the Mn4 cluster and accepts a hydrogen bond from Tyr YD). The absence of significant mutation-induced spectral alterations in the D1-Glu189 mutants shows that the oxidation of the Mn4 cluster does not alter the frequencies of the carboxylate stretching modes of D1-Glu189 during the S0 → S1, S1 → S2, or S2 → S3 transitions. One explanation of these data is that D1-Glu189 ligates a Mn ion that does not increase its charge or oxidation state during any of these S-state transitions. However, because the same conclusion was reached previously for D1-Asp170, and because the recent X-ray crystallographic structural models assign D1-Asp170 and D1-Glu189 as ligating different Mn ions, this explanation requires that (1) the extra positive charge that develops on the Mn4 cluster during the S1 → S2 transition be localized on the Mn ion that is ligated by the α-COO- group of D1-Ala344 and (2) any increase in positive charge that develops on the Mn4 cluster during the S0 → S1 and S2 → S3 transitions be localized on the one Mn ion that is not ligated by D1-Asp170, D1-Glu189, or D1-Ala344. An alternative explanation of the FTIR data is that D1-Glu189 does not ligate the Mn4 cluster. This conclusion would be consistent with earlier spectroscopic analyses of D1-Glu189 mutants, but would require that the proximity of D1-Glu189 to manganese in the X-ray crystallographic structural models be an artifact of the radiation-induced reduction of the Mn4 cluster that occurred during the collection of the X-ray diffraction data.
UR - http://www.scopus.com/inward/record.url?scp=33746303803&partnerID=8YFLogxK
U2 - 10.1021/bi060583a
DO - 10.1021/bi060583a
M3 - Article
SN - 0006-2960
VL - 45
SP - 8801
EP - 8811
JO - Biochemistry
JF - Biochemistry
IS - 29
ER -