Abstract
We provide a direct proof of a noncollapsing estimate for compact hypersurfaces with positive mean curvature moving under the mean curvature flow: Precisely, if every point on the initial hypersurface admits an interior sphere with radius inversely proportional to the mean curvature at that point, then this remains true for all positive times in the interval of existence.
Original language | English |
---|---|
Pages (from-to) | 1413-1418 |
Number of pages | 6 |
Journal | Geometry and Topology |
Volume | 16 |
Issue number | 3 |
DOIs | |
Publication status | Published - 24 Jul 2012 |