Noncommutative Atiyah-Patodi-Singer boundary conditions and index pairings in KK-theory

A. L. Carey, J. Phillips, A. Rennie

    Research output: Contribution to journalArticlepeer-review

    8 Citations (Scopus)

    Abstract

    We investigate an extension of ideas of Atiyah-Patodi-Singer (APS) to a noncommutative geometry setting framed in terms of Kasparov modules. We use a mapping cone construction to relate odd index pairings to even index pairings with APS boundary conditions in the setting of KK-theory, generalising the commutative theory. We find that Cuntz-Krieger systems provide a natural class of examples for our construction and the index pairings coming from APS boundary conditions yield complete K-theoretic information about certain graph C□-algebras.

    Original languageEnglish
    Pages (from-to)59-109
    Number of pages51
    JournalJournal fur die Reine und Angewandte Mathematik
    Issue number643
    DOIs
    Publication statusPublished - Jun 2010

    Fingerprint

    Dive into the research topics of 'Noncommutative Atiyah-Patodi-Singer boundary conditions and index pairings in KK-theory'. Together they form a unique fingerprint.

    Cite this