Nonresonant ENZ metamaterial at visible wavelength for superior refractive index matching sensing

Z. Fusco, M. Taheri, M. Rahmani, D. Neshev, T. White, A. Tricoli

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    Abstract

    In the compelling race of finding alternative plasmonic material, metallic sodium tungsten bronzes, NaxWO3 with x<0.25, host promising optoelectronic properties emerging from the insulator-metal transition (IMT), such as strong interband transition and intense near-infrared plasmonic absorption. So far, studies have focused on tuning the IR plasmonic properties for the realization of functional devices, ranging from biosensors to smart windows. However, the utilization of the transparency band where the permittivity approaches zero still remains largely unexplored. Here, we show preliminary results which indicates an epsilon-near-zero (ENZ) behavior at optical frequencies of NaxWO3 which arises from the minimization of the total scattering cross-section. Additionally, as a proof of concept, we explore this material for sensing applications and we establish a performant optical sensor with sensitivity of 150 nm/RIU and showing a threefold enhancement with respect to traditional Au nanospheres. The peculiar sensing mechanism is investigated both experimentally and theoretically by means of electrodynamic and first principle calculations. Combined with the high quality of the NaxWO3 single crystals, ENZ properties in the ∼400-600 nm region and low losses, these new insights offer great promise for the inexpensive realization of new generations of electro-optical devices with application ranging from ultrasensitive biosensors and light harvesting to exotic cloaking materials.

    Original languageEnglish
    Title of host publicationSPIE Micro + Nano Materials, Devices, and Applications 2019
    EditorsM. Cather Simpson, Saulius Juodkazis
    PublisherSPIE
    ISBN (Electronic)9781510631427
    DOIs
    Publication statusPublished - 2019
    EventSPIE Micro + Nano Materials, Devices, and Applications 2019 - Melbourne, Australia
    Duration: 9 Dec 201912 Dec 2019

    Publication series

    NameProceedings of SPIE - The International Society for Optical Engineering
    Volume11201
    ISSN (Print)0277-786X
    ISSN (Electronic)1996-756X

    Conference

    ConferenceSPIE Micro + Nano Materials, Devices, and Applications 2019
    Country/TerritoryAustralia
    CityMelbourne
    Period9/12/1912/12/19

    Fingerprint

    Dive into the research topics of 'Nonresonant ENZ metamaterial at visible wavelength for superior refractive index matching sensing'. Together they form a unique fingerprint.

    Cite this