Nuclear tracks in solids: Registration physics and the compound spike

Lewis T. Chadderton*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    89 Citations (Scopus)

    Abstract

    Observations of GeV heavy ion and MeV cluster-ion tracks in crystalline solids give us new insight into registration physics. Thermal and ion explosion spikes no longer compete; a 'compound spike' accounts for both. Ion explosion dominates for surface tracks (electronic sputtering). And there can also be transient plasma stopping in the bulk. For clusters there are 'vicinage effects' - both electronic and nuclear - which can influence track dimensions and structure. Displacement cascades in large energetic clusters may lead to projectile "fission" and coherent flow into sub-tracks. The absence of tracks in certain targets, and their size/structure in others, leads to a model of projectile assisted prompt anneal (PAPA) in ∼10-11 s, either partial or complete, often by swift epitaxy, on elemental lattices (e.g. silicon) or on compound sublattices (e.g. fluorite). Phase transformations are important, but simple target amorphization is rare - the exception, not the rule. For many targets the thermal spike (macroscopic) fails, since 'point' defects (atomistic) characteristic of the target, their motion, and the electronic band structure, determine latent track detail. Circumstances in which the Bragg Rule of Additivity fails completely are revealed, and the kinetic threshold for constructive phase transitions in tracks described. This same track physics applies generally also to geothermometry - the opposite time extremum (∼10+11 s) - where annealing is due to defect assisted delayed anneal (DADA). Differences between etching rates of induced and spontaneous fission tracks can be explained. The geothermobarometric "Wendt/Vidal effect" (2002) - combined pressure, temperature and stress (with time) influences on fission track annealing (in e.g. apatite) - is briefly discussed.

    Original languageEnglish
    Pages (from-to)13-34
    Number of pages22
    JournalRadiation Measurements
    Volume36
    Issue number1-6 SPEC.
    DOIs
    Publication statusPublished - Jun 2003

    Fingerprint

    Dive into the research topics of 'Nuclear tracks in solids: Registration physics and the compound spike'. Together they form a unique fingerprint.

    Cite this