NUGRID STELLAR DATA SET. I. STELLAR YIELDS from H to BI for STARS with METALLICITIES Z = 0.02 and Z = 0.01

M. Pignatari, F. Herwig, R. Hirschi, M. Bennett, G. Rockefeller, C. Fryer, F. X. Timmes, C. Ritter, A. Heger, S. Jones, U. Battino, A. Dotter, R. Trappitsch, S. Diehl, U. Frischknecht, A. Hungerford, G. Magkotsios, C. Travaglio, P. Young

    Research output: Contribution to journalArticlepeer-review

    177 Citations (Scopus)

    Abstract

    We provide a set of stellar evolution and nucleosynthesis calculations that applies established physics assumptions simultaneously to low- and intermediate-mass and massive star models. Our goal is to provide an internally consistent and comprehensive nuclear production and yield database for applications in areas such as presolar grain studies. Our non-rotating models assume convective boundary mixing (CBM) where it has been adopted before. We include 8 (12) initial masses for Z = 0.01 (0.02). Models are followed either until the end of the asymptotic giant branch phase or the end of Si burning, complemented by simple analytic core-collapse supernova (SN) models with two options for fallback and shock velocities. The explosions show which pre-SN yields will most strongly be effected by the explosive nucleosynthesis. We discuss how these two explosion parameters impact the light elements and the s and p process. For low- and intermediate-mass models, our stellar yields from H to Bi include the effect of CBM at the He-intershell boundaries and the stellar evolution feedback of the mixing process that produces the pocket. All post-processing nucleosynthesis calculations use the same nuclear reaction rate network and nuclear physics input. We provide a discussion of the nuclear production across the entire mass range organized by element group. The entirety of our stellar nucleosynthesis profile and time evolution output are available electronically, and tools to explore the data on the NuGrid VOspace hosted by the Canadian Astronomical Data Centre are introduced.

    Original languageEnglish
    Article number24
    JournalAstrophysical Journal, Supplement Series
    Volume225
    Issue number2
    DOIs
    Publication statusPublished - Aug 2016

    Fingerprint

    Dive into the research topics of 'NUGRID STELLAR DATA SET. I. STELLAR YIELDS from H to BI for STARS with METALLICITIES Z = 0.02 and Z = 0.01'. Together they form a unique fingerprint.

    Cite this