Object tracking: A survey

Alper Yilmaz*, Omar Javed, Mubarak Shah

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

4346 Citations (Scopus)

Abstract

The goal of this article is to review the state-of-the-art tracking methods, classify them into different categories, and identify new trends. Object tracking, in general, is a challenging problem. Difficulties in tracking objects can arise due to abrupt object motion, changing appearance patterns of both the object and the scene, nonrigid object structures, object-to-object and object-to-scene occlusions, and camera motion. Tracking is usually performed in the context of higher-level applications that require the location and/or shape of the object in every frame. Typically, assumptions are made to constrain the tracking problem in the context of a particular application. In this survey, we categorize the tracking methods on the basis of the object and motion representations used, provide detailed descriptions of representative methods in each category, and examine their pros and cons. Moreover, we discuss the important issues related to tracking including the use of appropriate image features, selection of motion models, and detection of objects.

Original languageEnglish
JournalACM Computing Surveys
Volume38
Issue number4
DOIs
Publication statusPublished - 25 Dec 2006
Externally publishedYes

Fingerprint

Dive into the research topics of 'Object tracking: A survey'. Together they form a unique fingerprint.

Cite this