TY - GEN
T1 - On accuracy/robustness/complexity trade-offs in face verification
AU - Sanderson, Conrad
AU - Cardinaux, Fabien
AU - Bengio, Samy
PY - 2005
Y1 - 2005
N2 - In much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose). However, a practical recognition system has to be robust to more challenging conditions. In this paper we first evaluate, on the relatively difficult BANCA database, the discrimination accuracy, robustness and complexity of Gaussian Mixture Model (GMM), 1D- and pseudo-2D Hidden Markov Model (HMM) based systems, using both manual and automatic face localization. We also propose to extend the GMM approach through the use of local features with embedded positional information, increasing accuracy without sacrificing its low complexity. Experiments show that good accuracy on manually located faces is not necessarily indicative of good accuracy on automatically located faces (which are imperfectly located). The deciding factor is shown to be the degree of constraints placed on spatial relations between face parts. Methods which utilize rigid constraints have poor robustness compared to methods which have relaxed constraints. Furthermore, we show that while the pseudo-2D HMM approach has the best overall accuracy, classification time on current hardware makes it impractical. The best trade-off in terms of complexity, robustness and discrimination accuracy is achieved by the extended GMM approach.
AB - In much of the literature devoted to face recognition, experiments are performed with controlled images (e.g. manual face localization, controlled lighting, background and pose). However, a practical recognition system has to be robust to more challenging conditions. In this paper we first evaluate, on the relatively difficult BANCA database, the discrimination accuracy, robustness and complexity of Gaussian Mixture Model (GMM), 1D- and pseudo-2D Hidden Markov Model (HMM) based systems, using both manual and automatic face localization. We also propose to extend the GMM approach through the use of local features with embedded positional information, increasing accuracy without sacrificing its low complexity. Experiments show that good accuracy on manually located faces is not necessarily indicative of good accuracy on automatically located faces (which are imperfectly located). The deciding factor is shown to be the degree of constraints placed on spatial relations between face parts. Methods which utilize rigid constraints have poor robustness compared to methods which have relaxed constraints. Furthermore, we show that while the pseudo-2D HMM approach has the best overall accuracy, classification time on current hardware makes it impractical. The best trade-off in terms of complexity, robustness and discrimination accuracy is achieved by the extended GMM approach.
UR - http://www.scopus.com/inward/record.url?scp=33646765253&partnerID=8YFLogxK
U2 - 10.1109/ICITA.2005.192
DO - 10.1109/ICITA.2005.192
M3 - Conference contribution
SN - 0769523161
SN - 9780769523163
T3 - Proceedings - 3rd International Conference on Information Technology and Applications, ICITA 2005
SP - 638
EP - 643
BT - Proceedings - 3rd International Conference on Information Technology and Applications, ICITA 2005
T2 - 3rd International Conference on Information Technology and Applications, ICITA 2005
Y2 - 4 July 2005 through 7 July 2005
ER -