Abstract
We study the convergence of Solomonoff's universal mixture on individual Martin-Löf random sequences. A new result is presented extending the work of Hutter and Muchnik [3] by showing that there does not exist a universal mixture that converges on all Martin-Löf random sequences. We show that this is not an artifact of the fact that the universal mixture is not a proper measure and that the normalised universal mixture also fails to converge on all Martin-Löf random sequences.
Original language | English |
---|---|
Pages (from-to) | 2-15 |
Number of pages | 14 |
Journal | Theoretical Computer Science |
Volume | 588 |
DOIs | |
Publication status | Published - 11 Jul 2015 |