On the [α/Fe]-[Fe/H] relations in early-type galaxies

Fiorenzo Vincenzo*, Chiaki Kobayashi, Philip Taylor

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    7 Citations (Scopus)

    Abstract

    We study how the predicted [α/Fe]-[Fe/H] relations in early-type galaxies vary as functions of their stellar masses, ages, and stellar velocity dispersions, by making use of cosmological chemodynamical simulations with feedback from active galactic nuclei. Our model includes a detailed treatment for the chemical enrichment from dying stars, core-collapse supernovae (both Type II and hypernovae) and Type Ia supernovae. At redshift z = 0, we create a catalogue of 526 galaxies, among which we determine 80 early-type galaxies. From the analysis of our simulations, we find [α/Fe]-[Fe/H] relations similar to the Galactic bulge. We also find that, in the oldest galaxies, Type Ia supernovae start to contribute at higher [Fe/H] than in the youngest ones. On the average, early-type galaxies with larger stellar masses (and, equivalently, higher stellar velocity dispersions) have higher [α/Fe] ratios, at fixed [Fe/H]. This is qualitatively consistent with the recent observations of Sybilska et al., but quantitatively there are mismatches, which might require stronger feedback, sub-classes of Type Ia Supernovae, or a variable initial mass function to address.

    Original languageEnglish
    Pages (from-to)L38-L42
    JournalMonthly Notices of the Royal Astronomical Society: Letters
    Volume480
    Issue number1
    DOIs
    Publication statusPublished - 2018

    Fingerprint

    Dive into the research topics of 'On the [α/Fe]-[Fe/H] relations in early-type galaxies'. Together they form a unique fingerprint.

    Cite this