TY - GEN
T1 - On the capacity region for secure index coding
AU - Liu, Yuxin
AU - Vellambi, Badri N.
AU - Kim, Young Han
AU - Sadeghi, Parastoo
N1 - Publisher Copyright:
© 2018 IEEE Information Theory Workshop, ITW 2018. All rights reserved.
PY - 2018/7/2
Y1 - 2018/7/2
N2 - We study the index coding problem in the presence of an eavesdropper, where the aim is to communicate without allowing the eavesdropper to learn any single message aside from the messages it may already know as side information. We establish an outer bound on the underlying secure capacity region of the index coding problem, which includes polymatroidal and security constraints, as well as the set of additional decoding constraints for legitimate receivers. We then propose a secure variant of the composite coding scheme, which yields an inner bound on the secure capacity region of the index coding problem. For the achievability of secure composite coding, a secret key with vanishingly small rate may be needed to ensure that each legitimate receiver who wants the same message as the eavesdropper, knows at least two more messages than the eavesdropper. For all securely feasible index coding problems with four or fewer messages, our numerical results establish the secure index coding capacity region.
AB - We study the index coding problem in the presence of an eavesdropper, where the aim is to communicate without allowing the eavesdropper to learn any single message aside from the messages it may already know as side information. We establish an outer bound on the underlying secure capacity region of the index coding problem, which includes polymatroidal and security constraints, as well as the set of additional decoding constraints for legitimate receivers. We then propose a secure variant of the composite coding scheme, which yields an inner bound on the secure capacity region of the index coding problem. For the achievability of secure composite coding, a secret key with vanishingly small rate may be needed to ensure that each legitimate receiver who wants the same message as the eavesdropper, knows at least two more messages than the eavesdropper. For all securely feasible index coding problems with four or fewer messages, our numerical results establish the secure index coding capacity region.
UR - http://www.scopus.com/inward/record.url?scp=85055269763&partnerID=8YFLogxK
U2 - 10.1109/ITW.2018.8613378
DO - 10.1109/ITW.2018.8613378
M3 - Conference contribution
T3 - 2018 IEEE Information Theory Workshop, ITW 2018
BT - 2018 IEEE Information Theory Workshop, ITW 2018
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2018 IEEE Information Theory Workshop, ITW 2018
Y2 - 25 November 2018 through 29 November 2018
ER -