TY - JOUR
T1 - ON THE DETECTION OF SPECTRAL RIPPLES FROM THE RECOMBINATION EPOCH
AU - Sathyanarayana Rao, Mayuri
AU - Subrahmanyan, Ravi
AU - Shankar, N. Udaya
AU - Chluba, Jens
N1 - Publisher Copyright:
© 2015. The American Astronomical Society. All rights reserved.
PY - 2015/9/1
Y1 - 2015/9/1
N2 - Photons emitted during cosmological hydrogen (500 ≲ z ≲ 1600) and helium recombination (1600 ≲ z ≲ 3500 for He II→He I, 5000 ≲ z ≲ 8000 for He III→ He II) are predicted to appear as broad, weak spectral distortions of the cosmic microwave background. We present a feasibility study for a ground-based detection of these recombination lines, which would uniquely probe astrophysical cosmology beyond the last scattering surface and provide observational constraints on the thermal history of the universe. We find that including sufficient signal spectral structure and maximizing signal-to-noise ratio, an octave band in the 2-6 GHz window is optimal; in this band the predicted signal appears as an additive quasi-sinusoidal component with amplitude about 8 nK embedded in a sky spectrum some nine orders of magnitude brighter. We discuss algorithms to detect these tiny spectral fluctuations in the sky spectrum by foreground modeling and introduce a maximally smooth function capable of describing the foreground spectrum and distinguishing the signal of interest. We conclude that detection is in principle feasible in realistic observing times provided that radio frequency interference and instrument bandpass calibration are controlled in this band at the required level; using Bayesian tests and mock data, we show that 90% confidence detection is possible with an array of 128 radiometers observing for 255 days of effective integration time. We propose APSERa - Array of Precision Spectrometers for the Epoch of Recombination - a dedicated radio telescope to detect these recombination lines.
AB - Photons emitted during cosmological hydrogen (500 ≲ z ≲ 1600) and helium recombination (1600 ≲ z ≲ 3500 for He II→He I, 5000 ≲ z ≲ 8000 for He III→ He II) are predicted to appear as broad, weak spectral distortions of the cosmic microwave background. We present a feasibility study for a ground-based detection of these recombination lines, which would uniquely probe astrophysical cosmology beyond the last scattering surface and provide observational constraints on the thermal history of the universe. We find that including sufficient signal spectral structure and maximizing signal-to-noise ratio, an octave band in the 2-6 GHz window is optimal; in this band the predicted signal appears as an additive quasi-sinusoidal component with amplitude about 8 nK embedded in a sky spectrum some nine orders of magnitude brighter. We discuss algorithms to detect these tiny spectral fluctuations in the sky spectrum by foreground modeling and introduce a maximally smooth function capable of describing the foreground spectrum and distinguishing the signal of interest. We conclude that detection is in principle feasible in realistic observing times provided that radio frequency interference and instrument bandpass calibration are controlled in this band at the required level; using Bayesian tests and mock data, we show that 90% confidence detection is possible with an array of 128 radiometers observing for 255 days of effective integration time. We propose APSERa - Array of Precision Spectrometers for the Epoch of Recombination - a dedicated radio telescope to detect these recombination lines.
KW - cosmic background radiation
KW - cosmology: observations
KW - early universe
KW - methods: analytical
KW - methods: observational
UR - http://www.scopus.com/inward/record.url?scp=84940831130&partnerID=8YFLogxK
U2 - 10.1088/0004-637X/810/1/3
DO - 10.1088/0004-637X/810/1/3
M3 - Article
SN - 0004-637X
VL - 810
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - 3
ER -