Abstract
Seismic body waves from distant earthquakes, which propagate near vertically beneath recording stations, provide tools for imaging shallow Earth structures with high vertical resolution. The most commonly used techniques such as P and S wave receiver functions utilize mode conversions from P to S waves or vice versa to retrieve information on the gradients of elastic properties in the crust and upper mantle. Here we demonstrate the feasibility and advantage of utilizing reflection signals through an improved method of teleseismic P wave coda autocorrelation. We recover clear reflections independently on vertical and radial components, which provide complementary constraints on the subsurface structures. Field data from two stations from different geological settings are analyzed, one of which is an ice station in Antarctica and the other is a bedrock station on the Kaapvaal craton in South Africa. The results from both analyses show the feasibility of the method to unveil P and S wave reflection signals from the ice-rock interface and the Moho discontinuity. Extensive synthetic experiments are set up to corroborate our results.
Original language | English |
---|---|
Pages (from-to) | 3776-3791 |
Number of pages | 16 |
Journal | Journal of Geophysical Research: Solid Earth |
Volume | 122 |
Issue number | 5 |
DOIs | |
Publication status | Published - 1 May 2017 |