TY - JOUR
T1 - On the ruin probability of the generalised ornstein-uhlenbeck process in the cramér case
AU - Bankovsky, Damien
AU - Klüppelberg, Claudia
AU - Maller, Ross
PY - 2011/8
Y1 - 2011/8
N2 - For a bivariate Lévy process (ξt, ηt)t≤0 and initial value V0, define the generalised Ornstein-Uhlenbeck (GOU) process Vt:= eξt (V0 + ∫t0 e−ξs− dηs), t ≤ 0, and the associated stochastic integral process Zt:= ∫t0 e−ξs− dηs, t ≤ 0. Let Tz:= inf(t > 0: Vt < 0 | V0 = z) and Ψ(z):= P(Tz < ∞) for z ≤ 0 be the ruin time and infinite horizon ruin probability of the GOU process. Our results extend previous work of Nyrhinen (2001) and others to give asymptotic estimates for Ψ(z) and the distribution of Tz as z →∞, under very general, easily checkable, assumptions, when ξ satisfies a Cramér condition.
AB - For a bivariate Lévy process (ξt, ηt)t≤0 and initial value V0, define the generalised Ornstein-Uhlenbeck (GOU) process Vt:= eξt (V0 + ∫t0 e−ξs− dηs), t ≤ 0, and the associated stochastic integral process Zt:= ∫t0 e−ξs− dηs, t ≤ 0. Let Tz:= inf(t > 0: Vt < 0 | V0 = z) and Ψ(z):= P(Tz < ∞) for z ≤ 0 be the ruin time and infinite horizon ruin probability of the GOU process. Our results extend previous work of Nyrhinen (2001) and others to give asymptotic estimates for Ψ(z) and the distribution of Tz as z →∞, under very general, easily checkable, assumptions, when ξ satisfies a Cramér condition.
KW - Exponential functionals of Lévy processes
KW - Generalised Ornstein-Uhlenbeck process
KW - Ruin probability
KW - Stochastic recurrence equation
UR - http://www.scopus.com/inward/record.url?scp=84880672916&partnerID=8YFLogxK
U2 - 10.1239/jap/1318940452
DO - 10.1239/jap/1318940452
M3 - Article
SN - 0021-9002
VL - 48A
SP - 15
EP - 28
JO - Journal of Applied Probability
JF - Journal of Applied Probability
ER -