TY - JOUR
T1 - On the variability of the ecosystem response to elevated atmospheric CO2 across spatial and temporal scales at the Duke Forest FACE experiment
AU - Paschalis, Athanasios
AU - Katul, Gabriel G.
AU - Fatichi, Simone
AU - Palmroth, Sari
AU - Way, Danielle
N1 - Publisher Copyright:
© 2016 Elsevier B.V.
PY - 2017/1/15
Y1 - 2017/1/15
N2 - While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at ecosystem level and at long-time scales remains a subject of debate. In part, the uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By combining 10 years of leaf gas exchange measurements collected during the Duke Forest Free Air CO2 Enrichment (FACE) experiment and three different leaf-scale stomatal conductance models, the leaf-to-leaf variability in photosynthetic and stomatal conductance properties is examined. How this variability is then reflected in ecosystem water vapor and carbon dioxide fluxes is explored by scaling up the leaf-level process to the canopy using model calculations. The main results are: (a) the space-time variability of the photosynthesis and stomatal conductance response is considerable as expected. (b) Variability of the calculated leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters. (c) Meteorological variability is playing the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (d) Leaf level results do not necessarily translate to similar ecosystem level responses due to indirect effects and other compensatory mechanisms related to long-term vegetation dynamics and ecosystem water balance.
AB - While the significance of elevated atmospheric CO2 concentration on instantaneous leaf-level processes such as photosynthesis and transpiration is rarely disputed, its integrated effect at ecosystem level and at long-time scales remains a subject of debate. In part, the uncertainty stems from the inherent leaf-to-leaf variability in gas exchange rates. By combining 10 years of leaf gas exchange measurements collected during the Duke Forest Free Air CO2 Enrichment (FACE) experiment and three different leaf-scale stomatal conductance models, the leaf-to-leaf variability in photosynthetic and stomatal conductance properties is examined. How this variability is then reflected in ecosystem water vapor and carbon dioxide fluxes is explored by scaling up the leaf-level process to the canopy using model calculations. The main results are: (a) the space-time variability of the photosynthesis and stomatal conductance response is considerable as expected. (b) Variability of the calculated leaf level fluxes is dependent on both the meteorological drivers and differences in leaf age, position within the canopy, nitrogen and CO2 fertilization, which can be accommodated in model parameters. (c) Meteorological variability is playing the dominant role at short temporal scales while parameter variability is significant at longer temporal scales. (d) Leaf level results do not necessarily translate to similar ecosystem level responses due to indirect effects and other compensatory mechanisms related to long-term vegetation dynamics and ecosystem water balance.
KW - Ecohydrological modeling
KW - Elevated CO
KW - FACE
KW - Spatio-temporal variability
KW - Stomatal conductance model
UR - http://www.scopus.com/inward/record.url?scp=84988014658&partnerID=8YFLogxK
U2 - 10.1016/j.agrformet.2016.09.003
DO - 10.1016/j.agrformet.2016.09.003
M3 - Article
SN - 0168-1923
VL - 232
SP - 367
EP - 383
JO - Agricultural and Forest Meteorology
JF - Agricultural and Forest Meteorology
ER -