One-Shot Action Localization by Learning Sequence Matching Network

Hongtao Yang, Xuming He, Fatih Porikli

    Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

    37 Citations (Scopus)

    Abstract

    Learning based temporal action localization methods require vast amounts of training data. However, such large-scale video datasets, which are expected to capture the dynamics of every action category, are not only very expensive to acquire but are also not practical simply because there exists an uncountable number of action classes. This poses a critical restriction to the current methods when the training samples are few and rare (e.g. when the target action classes are not present in the current publicly available datasets). To address this challenge, we conceptualize a new example-based action detection problem where only a few examples are provided, and the goal is to find the occurrences of these examples in an untrimmed video sequence. Towards this objective, we introduce a novel one-shot action localization method that alleviates the need for large amounts of training samples. Our solution adopts the one-shot learning technique of Matching Network and utilizes correlations to mine and localize actions of previously unseen classes. We evaluate our one-shot action localization method on the THUMOS14 and ActivityNet datasets, of which we modified the configuration to fit our one-shot problem setup.

    Original languageEnglish
    Title of host publicationProceedings - 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    PublisherIEEE Computer Society
    Pages1450-1459
    Number of pages10
    ISBN (Electronic)9781538664209
    DOIs
    Publication statusPublished - 14 Dec 2018
    Event31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018 - Salt Lake City, United States
    Duration: 18 Jun 201822 Jun 2018

    Publication series

    NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
    ISSN (Print)1063-6919

    Conference

    Conference31st Meeting of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2018
    Country/TerritoryUnited States
    CitySalt Lake City
    Period18/06/1822/06/18

    Fingerprint

    Dive into the research topics of 'One-Shot Action Localization by Learning Sequence Matching Network'. Together they form a unique fingerprint.

    Cite this