TY - GEN
T1 - Open-World Stereo Video Matching with Deep RNN
AU - Zhong, Yiran
AU - Li, Hongdong
AU - Dai, Yuchao
N1 - Publisher Copyright:
© 2018, Springer Nature Switzerland AG.
PY - 2018
Y1 - 2018
N2 - Deep Learning based stereo matching methods have shown great successes and achieved top scores across different benchmarks. However, like most data-driven methods, existing deep stereo matching networks suffer from some well-known drawbacks such as requiring large amount of labeled training data, and that their performances are fundamentally limited by the generalization ability. In this paper, we propose a novel Recurrent Neural Network (RNN) that takes a continuous (possibly previously unseen) stereo video as input, and directly predicts a depth-map at each frame without a pre-training process, and without the need of ground-truth depth-maps as supervision. Thanks to the recurrent nature (provided by two convolutional-LSTM blocks), our network is able to memorize and learn from its past experiences, and modify its inner parameters (network weights) to adapt to previously unseen or unfamiliar environments. This suggests a remarkable generalization ability of the net, making it applicable in an open world setting. Our method works robustly with changes in scene content, image statistics, and lighting and season conditions etc. By extensive experiments, we demonstrate that the proposed method seamlessly adapts between different scenarios. Equally important, in terms of the stereo matching accuracy, it outperforms state-of-the-art deep stereo approaches on standard benchmark datasets such as KITTI and Middlebury stereo.
AB - Deep Learning based stereo matching methods have shown great successes and achieved top scores across different benchmarks. However, like most data-driven methods, existing deep stereo matching networks suffer from some well-known drawbacks such as requiring large amount of labeled training data, and that their performances are fundamentally limited by the generalization ability. In this paper, we propose a novel Recurrent Neural Network (RNN) that takes a continuous (possibly previously unseen) stereo video as input, and directly predicts a depth-map at each frame without a pre-training process, and without the need of ground-truth depth-maps as supervision. Thanks to the recurrent nature (provided by two convolutional-LSTM blocks), our network is able to memorize and learn from its past experiences, and modify its inner parameters (network weights) to adapt to previously unseen or unfamiliar environments. This suggests a remarkable generalization ability of the net, making it applicable in an open world setting. Our method works robustly with changes in scene content, image statistics, and lighting and season conditions etc. By extensive experiments, we demonstrate that the proposed method seamlessly adapts between different scenarios. Equally important, in terms of the stereo matching accuracy, it outperforms state-of-the-art deep stereo approaches on standard benchmark datasets such as KITTI and Middlebury stereo.
KW - Convolutional LSTM
KW - Open world
KW - Recurrent neural network
KW - Stereo video matching
UR - http://www.scopus.com/inward/record.url?scp=85055448376&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-01216-8_7
DO - 10.1007/978-3-030-01216-8_7
M3 - Conference contribution
SN - 9783030012151
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 104
EP - 119
BT - Computer Vision – ECCV 2018 - 15th European Conference, 2018, Proceedings
A2 - Hebert, Martial
A2 - Weiss, Yair
A2 - Ferrari, Vittorio
A2 - Sminchisescu, Cristian
PB - Springer Verlag
T2 - 15th European Conference on Computer Vision, ECCV 2018
Y2 - 8 September 2018 through 14 September 2018
ER -