Optical characterisation of alumina–mullite materials for solar particle receiver applications

Jingjing Chen, Vincent M. Wheeler, Boqing Liu, Apurv Kumar, Joe Coventry, Wojciech Lipiński*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    17 Citations (Scopus)

    Abstract

    Alumina–mullite particles are used in high-temperature solar thermal applications such as solar particle receivers. In this study, optical properties of alumina–mullite materials with variable content of alumina and mullite are determined in the spectral range of 0.193–1.69 μm. Variable angle spectroscopic ellipsometry is performed for alumina–mullite thin films, which are fabricated by magnetron sputtering. The thin films are characterised by scanning electron microscopy, atomic force microscopy, and energy dispersive spectroscopy methods. The B-spline model is employed to generate ellipsometric parameters to fit the measured data and to obtain the optical properties. The investigated materials of variable content of alumina and mullite have a similar refractive index in the considered spectral range. The absorptive index of the alumina–mullite materials in the spectral range of 0.193–0.4 μm is higher than in the range 0.4–1.69 μm. The absorptive index decreases with increasing content of alumina in the spectral range of 0.193–0.4 μm. The material composed of similar proportions of alumina and mullite yields the highest absorptive index in the spectral range of 0.4–1.1 μm. The optical properties determined for the alumina–mullite materials are applied to obtain the radiative properties of spherical homogeneous particles. Mie theory is used to calculate absorption and scattering efficiency factors, as well as the scattering phase function. In addition, the scattering phase functions are obtained using the Henyey–Greenstein approximation and the transport approximation. The Monte Carlo ray-tracing method is employed to study the radiative transfer in a model one-dimensional particle curtain containing polydisperse particles exposed to high-flux solar irradiation. It is found that the overall reflectance, absorptance and transmittance of the particles only weakly depend on the optical properties of the materials investigated.

    Original languageEnglish
    Article number111170
    JournalSolar Energy Materials and Solar Cells
    Volume230
    DOIs
    Publication statusPublished - 15 Sept 2021

    Fingerprint

    Dive into the research topics of 'Optical characterisation of alumina–mullite materials for solar particle receiver applications'. Together they form a unique fingerprint.

    Cite this