Optical design of a broadband atmospheric dispersion corrector for MAVIS

Davide Greggio*, Christian Schwab, Demetrio Magrin, Simone Di Filippo, Valentina Viotto, François Rigaut

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

The MCAO Assisted Visible Imager and Spectrograph (MAVIS), is a new instrument for ESO's Very Large Telescope. The science instruments, namely an imager and a spectrograph observing at VIS wavelengths (370-1000nm), are fed by a MCAO module which performs wide field wavefront sensing and correction by means of both NGS and LGS stars. To maximize sky coverage, tip-tilt sensing is done at NIR wavelengths (1000-1700 nm) by selecting up to three stars in a 2arcmin FoV. In order to maximize the stability between NGS wavefront sensor and scientific instruments, we designed a common-path Atmospheric Dispersion Corrector (ADC) able to efficiently compensate for atmospheric differential refraction in the full wavelength range used by the MAVIS sub-systems. In this paper we present the design of the ADC. A few possible combinations of glasses are proposed and compared in terms of residual chromatic aberration, throughput, exit pupil movement and total thickness of the prism assembly.

Original languageEnglish
Title of host publicationGround-Based and Airborne Instrumentation for Astronomy VIII
EditorsChristopher J. Evans, Julia J. Bryant, Kentaro Motohara
PublisherSPIE
ISBN (Electronic)9781510636811
DOIs
Publication statusPublished - 2020
EventGround-Based and Airborne Instrumentation for Astronomy VIII 2020 - Virtual, Online, United States
Duration: 14 Dec 202022 Dec 2020

Publication series

NameProceedings of SPIE - The International Society for Optical Engineering
Volume11447
ISSN (Print)0277-786X
ISSN (Electronic)1996-756X

Conference

ConferenceGround-Based and Airborne Instrumentation for Astronomy VIII 2020
Country/TerritoryUnited States
CityVirtual, Online
Period14/12/2022/12/20

Fingerprint

Dive into the research topics of 'Optical design of a broadband atmospheric dispersion corrector for MAVIS'. Together they form a unique fingerprint.

Cite this