Abstract
Light beams with helical phase profile correspond to photons having orbital angular momentum (OAM). A Laguerre-Gaussian (LG) beam is an example where its helical phase sets a phase-singularity at the optical axis and forms a ring-shaped transverse amplitude profile. Here, we describe a unique beam where both phase and amplitude express a helical profile as the beam propagates in free space. Such a beam can be accurately referred to as an optical twister. We characterize optical twisters and demonstrate their capacity to induce spiral motion on particles trapped along the twisters" path. Unlike LG beams, the far field projection of the twisted optical beam maintains a high photon concentration even at higher values of topological charge. Optical twisters have therefore profound applications to fundamental studies of light and atoms such as in quantum entanglement of the OAM, toroidal traps for cold atoms and for optical manipulation of microscopic particles.
Original language | English |
---|---|
Pages (from-to) | 476-481 |
Number of pages | 6 |
Journal | Optics Express |
Volume | 19 |
Issue number | 2 |
DOIs | |
Publication status | Published - 17 Jan 2011 |