@inproceedings{e6947b7eade14687a39dcf2ae3d817e2,
title = "Optimal learning high-order Markov random fields priors of colour image",
abstract = "In this paper, we present an optimised learning algorithm for learning the parametric prior models for high-order Markov random fields (MRF) of colour images. Compared to the priors used by conventional low-order MRFs, the learned priors have richer expressive power and can capture the statistics of natural scenes. Our proposed optimal learning algorithm is achieved by simplifying the estimation of partition function without compromising the accuracy of the learned model. The parameters in MRF colour image priors are learned alternatively and iteratively in an EM-like fashion by maximising their likelihood. We demonstrate the capability of the proposed learning algorithm of highorder MRF colour image priors with the application of colour image denoising. Experimental results show the superior performance of our algorithm compared to the state-of-the-art of colour image priors in [1], although we use a much smaller training image set.",
keywords = "Colour image denoising, Image prior, Markov random fields",
author = "Ke Zhang and Huidong Jin and Zhouyu Fu and Nianjun Liu",
year = "2007",
doi = "10.1007/978-3-540-76386-4_45",
language = "English",
isbn = "9783540763857",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
number = "PART 1",
pages = "482--491",
booktitle = "Computer Vision - ACCV 2007 - 8th Asian Conference on Computer Vision, Proceedings",
address = "Germany",
edition = "PART 1",
note = "8th Asian Conference on Computer Vision, ACCV 2007 ; Conference date: 18-11-2007 Through 22-11-2007",
}