TY - GEN
T1 - Optimised KD-trees for fast image descriptor matching
AU - Silpa-Anan, Chanop
AU - Hartley, Richard
PY - 2008
Y1 - 2008
N2 - In this paper, we look at improving the KD-tree for a specific usage: indexing a large number of SIFT and other types of image descriptors. We have extended priority search, to priority search among multiple trees. By creating multiple KD-trees from the same data set and simultaneously searching among these trees, we have improved the KD-tree's search performance significantly. We have also exploited the structure in SIFT descriptors (or structure in any data set) to reduce the time spent in backtracking. By using Principal Component Analysis to align the principal axes of the data with the coordinate axes, we have further increased the KD-tree's search performance.
AB - In this paper, we look at improving the KD-tree for a specific usage: indexing a large number of SIFT and other types of image descriptors. We have extended priority search, to priority search among multiple trees. By creating multiple KD-trees from the same data set and simultaneously searching among these trees, we have improved the KD-tree's search performance significantly. We have also exploited the structure in SIFT descriptors (or structure in any data set) to reduce the time spent in backtracking. By using Principal Component Analysis to align the principal axes of the data with the coordinate axes, we have further increased the KD-tree's search performance.
UR - http://www.scopus.com/inward/record.url?scp=51949097915&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2008.4587638
DO - 10.1109/CVPR.2008.4587638
M3 - Conference contribution
SN - 9781424422432
T3 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
BT - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
T2 - 26th IEEE Conference on Computer Vision and Pattern Recognition, CVPR
Y2 - 23 June 2008 through 28 June 2008
ER -