Optimization of formation for multi-agent systems based on LQR

Chang bin Yu, Yin qiu Wang*, Jin liang Shao

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    12 Citations (Scopus)

    Abstract

    In this paper, three optimal linear formation control algorithms are proposed for first-order linear multiagent systems from a linear quadratic regulator (LQR) perspective with cost functions consisting of both interaction energy cost and individual energy cost, because both the collective object (such as formation or consensus) and the individual goal of each agent are very important for the overall system. First, we propose the optimal formation algorithm for first-order multi-agent systems without initial physical couplings. The optimal control parameter matrix of the algorithm is the solution to an algebraic Riccati equation (ARE). It is shown that the matrix is the sum of a Laplacian matrix and a positive definite diagonal matrix. Next, for physically interconnected multi-agent systems, the optimal formation algorithm is presented, and the corresponding parameter matrix is given from the solution to a group of quadratic equations with one unknown. Finally, if the communication topology between agents is fixed, the local feedback gain is obtained from the solution to a quadratic equation with one unknown. The equation is derived from the derivative of the cost function with respect to the local feedback gain. Numerical examples are provided to validate the effectiveness of the proposed approaches and to illustrate the geometrical performances of multi-agent systems.

    Original languageEnglish
    Pages (from-to)96-109
    Number of pages14
    JournalFrontiers of Information Technology and Electronic Engineering
    Volume17
    Issue number2
    DOIs
    Publication statusPublished - 1 Feb 2016

    Fingerprint

    Dive into the research topics of 'Optimization of formation for multi-agent systems based on LQR'. Together they form a unique fingerprint.

    Cite this