TY - GEN
T1 - Orbit control method for solar sail demonstrator IKAROS via spin rate control
AU - Mimasu, Yuya
AU - Yamaguchi, Tomohiro
AU - Nakamiya, Masaki
AU - Funase, Ryu
AU - Saiki, Takanao
AU - Tsuda, Yuichi
AU - Mori, Osamu
AU - Kawaguchi, Jun'ichiro
PY - 2012
Y1 - 2012
N2 - It is well known that the thrust force of the solar sail due to the solar radiation pressure is changed by the orientation of the sail with respect to the Sun direction. Therefore, the orbit of the solar sail can be controlled by changing the attitude of the spacecraft. In this study, we consider the spinning solar power sail IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun), which succeeded to become the world's first flight solar sail in orbit. The IKAROS attitude, i.e. the spin-axis direction is nominally controlled by the rhumb-line control method. By utilizing the solar radiation pressure (SRP) torque, however, we are able to change the direction of the spin-axis only by controlling its spin rate. This is because the spin axis direction relates to the balance between the angular momentum of spinning and the SRP torque. Thus, we can control the solar sail's orbit by controlling the spin rate. The main objective in this study is to construct the orbit control strategy of the spinning solar sail via the spin rate control.
AB - It is well known that the thrust force of the solar sail due to the solar radiation pressure is changed by the orientation of the sail with respect to the Sun direction. Therefore, the orbit of the solar sail can be controlled by changing the attitude of the spacecraft. In this study, we consider the spinning solar power sail IKAROS (Interplanetary Kite-craft Accelerated by Radiation Of the Sun), which succeeded to become the world's first flight solar sail in orbit. The IKAROS attitude, i.e. the spin-axis direction is nominally controlled by the rhumb-line control method. By utilizing the solar radiation pressure (SRP) torque, however, we are able to change the direction of the spin-axis only by controlling its spin rate. This is because the spin axis direction relates to the balance between the angular momentum of spinning and the SRP torque. Thus, we can control the solar sail's orbit by controlling the spin rate. The main objective in this study is to construct the orbit control strategy of the spinning solar sail via the spin rate control.
UR - http://www.scopus.com/inward/record.url?scp=84877952657&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84877952657
SN - 9780877035770
T3 - Advances in the Astronautical Sciences
SP - 3547
EP - 3560
BT - ASTRODYNAMICS 2011 - Advances in the Astronautical Sciences
T2 - 2011 AAS/AIAA Astrodynamics Specialist Conference, ASTRODYNAMICS 2011
Y2 - 31 July 2011 through 4 August 2011
ER -