Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond

Darren C.J. Wong*, Rod Peakall

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    The Orchidaceae is rivaled only by the Asteraceae as the largest plant family, with the estimated number of species exceeding 25,000 and encompassing more than 700 genera. To gain insights into the mechanisms driving species diversity across both global and local scales, well-supported phylogenies targeting different taxonomic groups and/or geographical regions will be crucial. High-throughput sequencing technologies have revolutionized the field of molecular phylogenetics by simplifying the process of obtaining genome-scale sequence data. Consequently, there has been an explosive growth of such data in public repositories. Here we took advantage of this unprecedented access to transcriptome data from predominantly non-phylogenetic studies to assess if it can be repurposed to gain rapid and accurate phylogenetic insights across the orchids. Exhaustive searches revealed transcriptomic data for more than 100 orchid species spanning 5 subfamilies, 13 tribes, 21 subtribes, and 50 genera that were amendable for exploratory phylotranscriptomic analysis. Next, we performed re-assembly of the transcriptomes before strategic selection of the final samples based on a gene completeness evaluation. Drawing on these data, we report phylogenetic analyses at both deep and shallow evolutionary scales via maximum likelihood and shortcut coalescent species tree methods. In this perspective, we discuss some key outcomes of this study and conclude by highlighting other complementary, albeit rarely explored, insights beyond phylogenetic analysis that repurposed multi-tissue transcriptome can offer.

    Original languageEnglish
    Article number910362
    JournalFrontiers in Plant Science
    Volume13
    DOIs
    Publication statusPublished - 27 May 2022

    Fingerprint

    Dive into the research topics of 'Orchid Phylotranscriptomics: The Prospects of Repurposing Multi-Tissue Transcriptomes for Phylogenetic Analysis and Beyond'. Together they form a unique fingerprint.

    Cite this