Abstract
Key aspects of magma generation and magma evolution in subduction zones are addressed in a study of Ambae (Aoba) volcano, Vanuatu. Two major lava suites (a low-Ti suite and high-Ti suite) are recognised on the basis of phenocryst mineralogy, geochemistry, and stratigraphy. Phenocryst assemblages in the more primitive low-Ti suite are dominated by magnesian olivine (mg ∼80 to 93.4) and clinopyroxene (mg ∼80 to 92), and include accessory Cr-rich spinel (cr ∼50 to 84). Calcic plagioclase and titanomagnetite are important additional phenocryst phases in the high-Ti suite lavas and the most evolved low-Ti suite lavas. The low-Ti suite lavas span a continuous compositional range, from picritic (up to ∼20 wt% MgO) to high-alumina basalts (<5 wt% MgO), and are consistent with differentiation involving observed phenocrysts. Melt compositions (aphyric lavas and groundmasses) in the low-Ti suite form a liquid-line of descent which corresponds with the petrographically-determined order of crystallisation: olivine + Cr-spinel, followed by clinopyroxene + olivine + titanomagnetite, and then plagioclase + clinopyroxene + olivine + titanomagnetite. A primary melt for the low-Ti suite has been estimated by correcting the most magnesian melt composition (an aphyric lava with ∼10.5 wt% MgO) for crystal fractionation, at the oxidising conditions determined from olivine-spinel pairs (fo2 ∼FMQ + 2.5 log units), until in equilibrium with the most magnesian olivine phenocrysts. The resultant composition has ∼15 wt% MgO and an mgFe2 value of ∼81. It requires deep (∼3 GPa) melting of the peridotitic mantle wedge at a potential temperature consistent with current estimates for the convecting upper mantle (Tp ∼1300°C). At least three geochemically-distinct source components are necessary to account for geochemical differences between, and geochemical heterogeneity within, the major lava suites. Two components, one LILE-rich and the other LILE- and LREE-rich, may both derive from the subducting ocean crust, possibly as an aqueous fluid and a silicate melt respeetively. A third component is attributed to either differnt degrees of melting, or extents of incompatible-element depletion, of the peridotitic mantle wedge.
Original language | English |
---|---|
Pages (from-to) | 79-100 |
Number of pages | 22 |
Journal | Contributions to Mineralogy and Petrology |
Volume | 114 |
Issue number | 1 |
DOIs | |
Publication status | Published - May 1993 |
Externally published | Yes |