Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology

Georg Leggewie, Anna Kolbe, Rémi Lemoine, Ute Roessner, Anna Lytovchenko, Ellen Zuther, Julia Kehr, Wolf B. Frommer, Jörg W. Riesmeier, Lothar Willmitzer, Alisdair R. Fernie*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

93 Citations (Scopus)

Abstract

The aim of this work was to examine the consequences of the heterologous expression of a spinach (Spinacia oleracea L.) sucrose transporter (SoSUT1) in potato (Solanum tuberosum L.). Many studies have indicated that reduction of the expression of this class of sucrose transporter has deleterious effects on plant growth and development; however, until now the possibility of improving plant performance by enhancing the expression of this sucrose transporter has not been reported. With this intention we constructed a chimeric construct in which SoSUT1 was cloned in-frame with the myc epitope. We confirmed that this construct, SoSUT1m, was able to mediate sucrose transport by expression in the yeast strain SUSY7. SoSUT1m was expressed in wild-type potato in the sense orientation under the control of the cauliflower mosaic virus 35S promoter to evaluate the effect of an increased constitutive expression of a class-I sucrose transporter. We confirmed that these plants displayed expression of SoSUT1 at both the transcript and protein level and that microsomal fragments isolated from selected lines had an increased sucrose uptake capacity. Analysis of metabolism of these lines indicated that the leaves were characterised by a reduced sucrose level yet exhibited little change in photosynthetic rate. Furthermore, despite the observed increase in sugar (and reduction in amino acid) levels within the tubers, there was little change in either starch content or tuber yield in the transformants. In summary, the genetic manipulation described in this paper resulted in a shift in carbon partitioning in both leaves and tubers and an increased sucrose uptake rate in plasma-membrane vesicles isolated from these lines, but had little impact on tuber metabolism or morphology.

Original languageEnglish
Pages (from-to)158-167
Number of pages10
JournalPlanta
Volume217
DOIs
Publication statusPublished - 2003
Externally publishedYes

Fingerprint

Dive into the research topics of 'Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology'. Together they form a unique fingerprint.

Cite this