Abstract
Carrier-selective passivating contacts in crystalline silicon (c-Si) solar cells have expanded from doped silicon films to non-silicon wide-bandgap materials to reduce parasitic absorption and production costs. Titanium oxide (TiOx) has emerged as one of the most promising materials and has achieved high performance in c-Si solar cells. In this work, TiOx is explored as a passivation interlayer in hole-selective contacts rather than conventional electron-selective contacts. Theoretical calculations and experimental results demonstrate that negative charges and shallow states in TiOx, derived from oxygen vacancies (VO), enhance surface passivation and assist hole tunneling, respectively. As a strategy to modulate VO, forming gas annealing is performed to further improve hole selectivity. By incorporating the TiOx passivation interlayer into MoOx-based c-Si solar cells, we achieve an improved efficiency and stability of the device, with the highest efficiency of 21.28%. This work advances the understanding of TiOx as a promising material to enhance hole selectivity for c-Si solar cells.
Original language | English |
---|---|
Pages (from-to) | 29833-29842 |
Number of pages | 10 |
Journal | Journal of Materials Chemistry A |
Volume | 12 |
Issue number | 43 |
Early online date | 7 Oct 2024 |
DOIs | |
Publication status | Published - 21 Nov 2024 |