TY - JOUR
T1 - Parameter constraints for flat cosmologies from cosmic microwave background and 2dFGRS power spectra
AU - Percival, Will J.
AU - Sutherland, Will
AU - Peacock, John A.
AU - Baugh, Carlton M.
AU - Bland-Hawthorn, Joss
AU - Bridges, Terry
AU - Cannon, Russell
AU - Cole, Shaun
AU - Colless, Matthew
AU - Collins, Chris
AU - Couch, Warrick
AU - Dalton, Gavin
AU - De Propris, Roberto
AU - Driver, Simon P.
AU - Efstathiou, George
AU - Ellis, Richard S.
AU - Frenk, Carlos S.
AU - Glazebrook, Karl
AU - Jackson, Carole
AU - Lahav, Ofer
AU - Lewis, Ian
AU - Lumsden, Stuart
AU - Maddox, Steve
AU - Moody, Stephen
AU - Norberg, Peder
AU - Peterson, Bruce A.
AU - Taylor, Keith
PY - 2002/12/11
Y1 - 2002/12/11
N2 - We constrain flat cosmological models with a joint likelihood analysis of a new compilation of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble constant h and the matter density Ωm, which arises mainly from preserving the location of the peaks in the angular power spectrum. This 'horizon-angle degeneracy' is considered in some detail and is shown to follow the simple relation Ωm h3.4 = constant. Adding the 2dF-GRS power spectrum constrains Ωm h and breaks the degeneracy. If tensor anisotropies are assumed to be negligible, we obtain values for the Hubble constant of h = 0.665±0.047, the matter density Ωm = 0.313±0.055, and the physical cold dark matter and baryon densities Ωm h2 = 0.115±0.009, Ωm h2 = 0.022±0.002 (standard rms errors). Including a possible tensor component causes very little change to these figures; we set an upper limit to the tensor-to-scalar ratio of r < 0.7 at a 95 per cent confidence level. We then show how these data can be used to constrain the equation of state of the vacuum, and find w < -0.52 at 95 per cent confidence. The preferred cosmological model is thus very well specified, and we discuss the precision with which future CMB data can be predicted, given the model assumptions. The 2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used here, are available from http://www.roe.ac.uk/~wjp/.
AB - We constrain flat cosmological models with a joint likelihood analysis of a new compilation of data from the cosmic microwave background (CMB) and from the 2dF Galaxy Redshift Survey (2dFGRS). Fitting the CMB alone yields a known degeneracy between the Hubble constant h and the matter density Ωm, which arises mainly from preserving the location of the peaks in the angular power spectrum. This 'horizon-angle degeneracy' is considered in some detail and is shown to follow the simple relation Ωm h3.4 = constant. Adding the 2dF-GRS power spectrum constrains Ωm h and breaks the degeneracy. If tensor anisotropies are assumed to be negligible, we obtain values for the Hubble constant of h = 0.665±0.047, the matter density Ωm = 0.313±0.055, and the physical cold dark matter and baryon densities Ωm h2 = 0.115±0.009, Ωm h2 = 0.022±0.002 (standard rms errors). Including a possible tensor component causes very little change to these figures; we set an upper limit to the tensor-to-scalar ratio of r < 0.7 at a 95 per cent confidence level. We then show how these data can be used to constrain the equation of state of the vacuum, and find w < -0.52 at 95 per cent confidence. The preferred cosmological model is thus very well specified, and we discuss the precision with which future CMB data can be predicted, given the model assumptions. The 2dFGRS power-spectrum data and covariance matrix, and the CMB data compilation used here, are available from http://www.roe.ac.uk/~wjp/.
KW - Cosmic microwave background
KW - Cosmological parameters
KW - Large-scale structure of Universe
UR - http://www.scopus.com/inward/record.url?scp=2442597419&partnerID=8YFLogxK
U2 - 10.1046/j.1365-8711.2002.06001.x
DO - 10.1046/j.1365-8711.2002.06001.x
M3 - Article
SN - 0035-8711
VL - 337
SP - 1068
EP - 1080
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 3
ER -