TY - GEN
T1 - Pattern mining in visual concept streams
AU - Xie, Lexing
AU - Chang, Shih Fu
PY - 2006
Y1 - 2006
N2 - Pattern mining algorithms are often much easier applied than quantitatively assessed. In this paper we address the pattern evaluation problem by looking at both the capability of models and the difficulty of target concepts. We use four different data mining models: frequent itemset mining, k-means clustering, hidden Markov model, and hierarchical hidden Markov model to mine 39 concept streams from the a 137-video broadcast news collection from TRECVID-2005. We hypothesize that the discovered patterns can reveal semantics beyond the input space, and thus evaluate the patterns against a much larger concept space containing 192 concepts defined by LSCOM. Results show that HHMM has the best average prediction among all models, however different models seem to excel in different concepts depending on the concept prior and the ontological relationship. Results also show that the majority of the target concepts are better predicted with temporal or combination hypotheses, and there are novel concepts found that are not part of the original lexicon. This paper presents the first effort on temporal pattern mining in the large concept space. There are many promising directions to use concept mining to help construct better concept detectors or to guide the design of multimedia ontology.
AB - Pattern mining algorithms are often much easier applied than quantitatively assessed. In this paper we address the pattern evaluation problem by looking at both the capability of models and the difficulty of target concepts. We use four different data mining models: frequent itemset mining, k-means clustering, hidden Markov model, and hierarchical hidden Markov model to mine 39 concept streams from the a 137-video broadcast news collection from TRECVID-2005. We hypothesize that the discovered patterns can reveal semantics beyond the input space, and thus evaluate the patterns against a much larger concept space containing 192 concepts defined by LSCOM. Results show that HHMM has the best average prediction among all models, however different models seem to excel in different concepts depending on the concept prior and the ontological relationship. Results also show that the majority of the target concepts are better predicted with temporal or combination hypotheses, and there are novel concepts found that are not part of the original lexicon. This paper presents the first effort on temporal pattern mining in the large concept space. There are many promising directions to use concept mining to help construct better concept detectors or to guide the design of multimedia ontology.
UR - http://www.scopus.com/inward/record.url?scp=34247624215&partnerID=8YFLogxK
U2 - 10.1109/ICME.2006.262457
DO - 10.1109/ICME.2006.262457
M3 - Conference contribution
SN - 1424403677
SN - 9781424403677
T3 - 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Proceedings
SP - 297
EP - 300
BT - 2006 IEEE International Conference on Multimedia and Expo, ICME 2006 - Proceedings
T2 - 2006 IEEE International Conference on Multimedia and Expo, ICME 2006
Y2 - 9 July 2006 through 12 July 2006
ER -