TY - GEN
T1 - Performance of piconet co-existence schemes in wireless body area networks
AU - Zhang, Andrew
AU - Smith, David B.
AU - Miniutti, Dino
AU - Hanlen, Leif W.
AU - Rodda, David
AU - Gilbert, Ben
PY - 2010
Y1 - 2010
N2 - Coexistence of multiple wireless body area networks (WBAN) is a very challenging problem because each piconet can have a large number of sensors and their movement is unpredictable. Moreover, suitable global coordination schemes do not exist as there is no natural choice of coordinator between piconets. Adaptive schemes that work well with low-occupancy channels, such as listen before transmit, are not a wise global solution because of the potential for high levels of traffic in any one area [1]. In this paper we investigate the performance of three classic multiple-access schemes - namely TDMA, FDMA and CDMA - for (inter-network) piconet coexistence. We first consider a theoretical analysis of these schemes and then simulate each scheme using real-world interference measurements. It is found that co-channel interference could significantly degrade system performance if left unchecked, and that TDMA and FDMA are better choices than CDMA in terms of co-channel interference mitigation.
AB - Coexistence of multiple wireless body area networks (WBAN) is a very challenging problem because each piconet can have a large number of sensors and their movement is unpredictable. Moreover, suitable global coordination schemes do not exist as there is no natural choice of coordinator between piconets. Adaptive schemes that work well with low-occupancy channels, such as listen before transmit, are not a wise global solution because of the potential for high levels of traffic in any one area [1]. In this paper we investigate the performance of three classic multiple-access schemes - namely TDMA, FDMA and CDMA - for (inter-network) piconet coexistence. We first consider a theoretical analysis of these schemes and then simulate each scheme using real-world interference measurements. It is found that co-channel interference could significantly degrade system performance if left unchecked, and that TDMA and FDMA are better choices than CDMA in terms of co-channel interference mitigation.
UR - http://www.scopus.com/inward/record.url?scp=77955032122&partnerID=8YFLogxK
U2 - 10.1109/WCNC.2010.5506746
DO - 10.1109/WCNC.2010.5506746
M3 - Conference contribution
SN - 9781424463985
T3 - IEEE Wireless Communications and Networking Conference, WCNC
BT - 2010 IEEE Wireless Communications and Networking Conference, WCNC 2010 - Proceedings
T2 - IEEE Wireless Communications and Networking Conference 2010, WCNC 2010
Y2 - 18 April 2010 through 21 April 2010
ER -