Periodic trends in metal-metal bonding in edge-shared [M2Cl10]4- systems

Germán Cavigliasso, Chung Yen Yu, Robert Stranger*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    10 Citations (Scopus)

    Abstract

    Periodic trends in metal-metal interactions in edge-shared [M2Cl10]4- systems, involving the transition metals from groups 4 through 8 and electronic configurations ranging from d1d1 through d5d5, have been investigated by calculating metal-metal bonding and spin-polarization (exchange) effects using density functional theory. The trends found in this study are compared with those for the analogous face-shared [M2Cl9]3- systems reported in earlier work. Strong linear correlations between the metal-metal bonding and spin-polarization terms have been obtained for all groups considered. In general, spin polarization and electron localization are predominant in 3d-3d species whereas electron delocalization and metal-metal bonding are favoured in 5d-5d species, with more variable results observed for 4d-4d systems. As previously found for face-shared [M2Cl9]3- systems, the strong correlations between the metal-metal bonding and spin polarization energy terms can be related to the fact that both properties appear to be similarly affected by the changes in the metal orbital properties and electron density occurring within the dndn groups. A significant difference between the face-shared and edge-shared systems is that while the 4d metals in the former show a strong tendency for delocalized metal-metal bonded structures, the edge-shared counterparts display much greater variation with both metal-metal bonded and weakly coupled complexes observed. The tendency for weaker metal-metal interactions can be traced to the inability of the edge-shared bridging structure to accommodate the smaller metal-metal distances required for strong metal-metal bonding. Crown

    Original languageEnglish
    Pages (from-to)2942-2948
    Number of pages7
    JournalPolyhedron
    Volume26
    Issue number13
    DOIs
    Publication statusPublished - 6 Aug 2007

    Fingerprint

    Dive into the research topics of 'Periodic trends in metal-metal bonding in edge-shared [M2Cl10]4- systems'. Together they form a unique fingerprint.

    Cite this