TY - GEN
T1 - Person re-identification in theWild
AU - Zheng, Liang
AU - Zhang, Hengheng
AU - Sun, Shaoyan
AU - Chandraker, Manmohan
AU - Yang, Yi
AU - Tian, Qi
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/11/6
Y1 - 2017/11/6
N2 - This paper1 presents a novel large-scale dataset and comprehensive baselines for end-to-end pedestrian detection and person recognition in raw video frames. Our baselines address three issues: the performance of various combinations of detectors and recognizers, mechanisms for pedestrian detection to help improve overall re-identification (re-ID) accuracy and assessing the effectiveness of different detectors for re-ID. We make three distinct contributions. First, a new dataset, PRW, is introduced to evaluate Person Reidentification in the Wild, using videos acquired through six near-synchronized cameras. It contains 932 identities and 11,816 frames in which pedestrians are annotated with their bounding box positions and identities. Extensive benchmarking results are presented on this dataset. Second, we show that pedestrian detection aids re-ID through two simple yet effective improvements: a cascaded fine-tuning strategy that trains a detection model first and then the classification model, and a Confidence Weighted Similarity (CWS) metric that incorporates detection scores into similarity measurement. Third, we derive insights in evaluating detector performance for the particular scenario of accurate person re-ID.
AB - This paper1 presents a novel large-scale dataset and comprehensive baselines for end-to-end pedestrian detection and person recognition in raw video frames. Our baselines address three issues: the performance of various combinations of detectors and recognizers, mechanisms for pedestrian detection to help improve overall re-identification (re-ID) accuracy and assessing the effectiveness of different detectors for re-ID. We make three distinct contributions. First, a new dataset, PRW, is introduced to evaluate Person Reidentification in the Wild, using videos acquired through six near-synchronized cameras. It contains 932 identities and 11,816 frames in which pedestrians are annotated with their bounding box positions and identities. Extensive benchmarking results are presented on this dataset. Second, we show that pedestrian detection aids re-ID through two simple yet effective improvements: a cascaded fine-tuning strategy that trains a detection model first and then the classification model, and a Confidence Weighted Similarity (CWS) metric that incorporates detection scores into similarity measurement. Third, we derive insights in evaluating detector performance for the particular scenario of accurate person re-ID.
UR - http://www.scopus.com/inward/record.url?scp=85022332149&partnerID=8YFLogxK
U2 - 10.1109/CVPR.2017.357
DO - 10.1109/CVPR.2017.357
M3 - Conference contribution
T3 - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
SP - 3346
EP - 3355
BT - Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Y2 - 21 July 2017 through 26 July 2017
ER -