TY - JOUR
T1 - Pervasive admixture between eucalypt species has consequences for conservation and assisted migration
AU - von Takach Dukai, Brenton
AU - Jack, Cameron
AU - Borevitz, Justin
AU - Lindenmayer, David B.
AU - Banks, Sam C.
N1 - Publisher Copyright:
© 2018 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd
PY - 2019/4
Y1 - 2019/4
N2 - Conservation management often uses information on genetic population structure to assess the importance of local provenancing for ecological restoration and reintroduction programs. For species that do not exhibit complete reproductive isolation, the estimation of population genetic parameters may be influenced by the extent of admixture. Therefore, to avoid perverse outcomes for conservation, genetically informed management strategies must determine whether hybridization between species is relevant, and the extent to which observed population genetic patterns are shaped by interspecific versus intraspecific gene flow. We used genotyping by sequencing to identify over 2,400 informative single nucleotide polymorphisms across 18 populations of Eucalyptus regnans F. Muell., a foundation tree species of montane forests in south-eastern Australia. We used these data to determine the extent of hybridization with another species, Eucalyptus obliqua L'Hér., and investigate how admixture influences genetic diversity parameters, by estimating metrics of genetic diversity and examining population genetic structure in datasets with and without admixed individuals. We found hybrid individuals at all sites and two highly introgressed populations. Hybrid individuals were not distributed evenly across environmental gradients, with logistic regression identifying hybrids as being associated with temperature. Removal of hybrids resulted in increases in genetic differentiation (F ST ), expected heterozygosity, observed heterozygosity and the inbreeding coefficient, and different patterns of isolation by distance. After removal of hybrids and introgressed populations, mountain ash showed very little population genetic structure, with a small effect of isolation by distance, and very low global F ST (0.03). Our study shows that, in plants, decisions around provenancing of individuals for restoration depend on knowledge of whether hybridization is influencing population genetic structure. For species in which most genetic variation is held within populations, there may be little benefit in planning conservation strategies around environmental adaptation of seed sources. The possibility for adaptive introgression may also be relevant when species regularly hybridize.
AB - Conservation management often uses information on genetic population structure to assess the importance of local provenancing for ecological restoration and reintroduction programs. For species that do not exhibit complete reproductive isolation, the estimation of population genetic parameters may be influenced by the extent of admixture. Therefore, to avoid perverse outcomes for conservation, genetically informed management strategies must determine whether hybridization between species is relevant, and the extent to which observed population genetic patterns are shaped by interspecific versus intraspecific gene flow. We used genotyping by sequencing to identify over 2,400 informative single nucleotide polymorphisms across 18 populations of Eucalyptus regnans F. Muell., a foundation tree species of montane forests in south-eastern Australia. We used these data to determine the extent of hybridization with another species, Eucalyptus obliqua L'Hér., and investigate how admixture influences genetic diversity parameters, by estimating metrics of genetic diversity and examining population genetic structure in datasets with and without admixed individuals. We found hybrid individuals at all sites and two highly introgressed populations. Hybrid individuals were not distributed evenly across environmental gradients, with logistic regression identifying hybrids as being associated with temperature. Removal of hybrids resulted in increases in genetic differentiation (F ST ), expected heterozygosity, observed heterozygosity and the inbreeding coefficient, and different patterns of isolation by distance. After removal of hybrids and introgressed populations, mountain ash showed very little population genetic structure, with a small effect of isolation by distance, and very low global F ST (0.03). Our study shows that, in plants, decisions around provenancing of individuals for restoration depend on knowledge of whether hybridization is influencing population genetic structure. For species in which most genetic variation is held within populations, there may be little benefit in planning conservation strategies around environmental adaptation of seed sources. The possibility for adaptive introgression may also be relevant when species regularly hybridize.
KW - Eucalyptus regnans
KW - SNP
KW - admixture
KW - eucalypt
KW - gene flow
KW - hybrid
KW - mountain ash
KW - population genetics
UR - http://www.scopus.com/inward/record.url?scp=85063625220&partnerID=8YFLogxK
U2 - 10.1111/eva.12761
DO - 10.1111/eva.12761
M3 - Article
SN - 1752-4571
VL - 12
SP - 845
EP - 860
JO - Evolutionary Applications
JF - Evolutionary Applications
IS - 4
ER -