TY - JOUR
T1 - Pharmacological cholesterol lowering reverses fibrotic NASH in obese, diabetic mice with metabolic syndrome
AU - Van Rooyen, Derrick M.
AU - Gan, Lay T.
AU - Yeh, Matthew M.
AU - Haigh, W. Geoffrey
AU - Larter, Claire Z.
AU - Ioannou, George
AU - Teoh, Narci C.
AU - Farrell, Geoffrey C.
PY - 2013/7
Y1 - 2013/7
N2 - Background & Aims We have recently showed that hyperinsulinemia promotes hepatic free cholesterol (FC) accumulation in obese, insulin-resistant Alms1 mutant (foz/foz) mice with NASH. Here we tested whether cholesterol-lowering drugs reduce stress-activated c-Jun N-terminal kinase (JNK) activation, hepatocyte injury/apoptosis, inflammation, and fibrosis in this metabolic syndrome NASH model. Methods Female foz/foz and WT mice were fed HF (0.2% cholesterol) 16 weeks, before adding ezetimibe (5 mg/kg), atorvastatin (20 mg/kg), or both to diet, another 8 weeks. Hepatic lipidomic analysis, ALT, liver histology, Sirius Red morphometry, hepatic mRNA and protein expression and immunohistochemistry (IHC) for apoptosis (M30), macrophages (F4/80), and polymorphs (myeloperoxidase) were determined. Results In mice with NASH, ezetimibe/atorvastatin combination normalized hepatic FC but did not alter saturated free fatty acids (FFA) and had minimal effects on other lipids; ezetimibe and atorvastatin had similar but less profound effects. Pharmacological lowering of FC abolished JNK activation, improved serum ALT, apoptosis, liver inflammation/NAFLD activity score, designation as "NASH", macrophage chemotactic protein-1 expression, reduced macrophage and polymorph populations, and liver fibrosis. Conclusions Cholesterol lowering with ezetimibe/atorvastatin combination reverses hepatic FC but not saturated FFA accumulation. This dampens JNK activation, ALT release, hepatocyte apoptosis, and inflammatory recruitment, with reversal of steatohepatitis pathology and liver fibrosis. Ezetimibe/statin combination is a potent, mechanism-based treatment that could reverse NASH and liver fibrosis.
AB - Background & Aims We have recently showed that hyperinsulinemia promotes hepatic free cholesterol (FC) accumulation in obese, insulin-resistant Alms1 mutant (foz/foz) mice with NASH. Here we tested whether cholesterol-lowering drugs reduce stress-activated c-Jun N-terminal kinase (JNK) activation, hepatocyte injury/apoptosis, inflammation, and fibrosis in this metabolic syndrome NASH model. Methods Female foz/foz and WT mice were fed HF (0.2% cholesterol) 16 weeks, before adding ezetimibe (5 mg/kg), atorvastatin (20 mg/kg), or both to diet, another 8 weeks. Hepatic lipidomic analysis, ALT, liver histology, Sirius Red morphometry, hepatic mRNA and protein expression and immunohistochemistry (IHC) for apoptosis (M30), macrophages (F4/80), and polymorphs (myeloperoxidase) were determined. Results In mice with NASH, ezetimibe/atorvastatin combination normalized hepatic FC but did not alter saturated free fatty acids (FFA) and had minimal effects on other lipids; ezetimibe and atorvastatin had similar but less profound effects. Pharmacological lowering of FC abolished JNK activation, improved serum ALT, apoptosis, liver inflammation/NAFLD activity score, designation as "NASH", macrophage chemotactic protein-1 expression, reduced macrophage and polymorph populations, and liver fibrosis. Conclusions Cholesterol lowering with ezetimibe/atorvastatin combination reverses hepatic FC but not saturated FFA accumulation. This dampens JNK activation, ALT release, hepatocyte apoptosis, and inflammatory recruitment, with reversal of steatohepatitis pathology and liver fibrosis. Ezetimibe/statin combination is a potent, mechanism-based treatment that could reverse NASH and liver fibrosis.
KW - Atorvastatin
KW - Ezetimibe
KW - Inflammatory recruitment
KW - Lipotoxicity
KW - Liver fibrosis
UR - http://www.scopus.com/inward/record.url?scp=84879132692&partnerID=8YFLogxK
U2 - 10.1016/j.jhep.2013.02.024
DO - 10.1016/j.jhep.2013.02.024
M3 - Article
SN - 0168-8278
VL - 59
SP - 144
EP - 152
JO - Journal of Hepatology
JF - Journal of Hepatology
IS - 1
ER -