Abstract
The effect of H passivation on the PL emission of Si nanocrystals produced in silica by ion-implantion and annealing is shown to depend on the implant fluence. At low fluences, where the nanocrystals are small, passivation causes an enhancement of the emission intensity that is uniform over the full spectral range and therefore appears to be independent of nanocrystal size. For higher fluences, where the average size and size distribution of the nanocrystals are larger, the enhancement occurs preferentially at longer wavelengths, giving rise to a red-shift in the emission spectra. Both the enhancement and the red-shift increase monotonically with increasing fluence. These data are shown to be consistent with a model in which the probability to contain a non-radiative defect increases with nanocrystal size.
Original language | English |
---|---|
Pages (from-to) | 422-425 |
Number of pages | 4 |
Journal | Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms |
Volume | 175-177 |
DOIs | |
Publication status | Published - Apr 2001 |
Event | 12th International Conference on Ion Beam Modification of Materials - Rio Grande do Sul, Brazil Duration: 3 Sept 2000 → 8 Sept 2000 |