Abstract
In this paper, the authors numerically studied the optical properties of a silicon photonic quasicrystal (PQC) nanohole array for photovoltaic applications. With the same active layer thickness, the ultimate efficiency of a solar cell integrated with an optimized PQC nanohole array can be enhanced by 9.01% and 1.40% compared to that with an ordered square lattice of a nanohole array and a random nanohole array, respectively. The absorptance enhancement is mainly due to the higher-order rotational symmetry in PQC structures, which leads to the presence of additional resonant modes, the broadening of existing modes and the reduction of surface reflectance. The angular response for both transverse-electric and transverse-magnetic modes are also analyzed in detail.
Original language | English |
---|---|
Article number | 035901 |
Journal | Journal of Optics (United Kingdom) |
Volume | 17 |
Issue number | 3 |
DOIs | |
Publication status | Published - 2015 |