Photoprotection of residual functional photosystem II units that survive illumination in the absence of repair, and their critical role in subsequent recovery

Zhen Ling Sun, Hae Youn Lee, Shizue Matsubara, Alexander B. Hope, Barry J. Pogson, Young Nam Hong, Wah Soon Chow*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    25 Citations (Scopus)

    Abstract

    Photosystem II (PSII) complexes, which split water into oxygen, protons and electrons in photosynthesis, require light but are also inactivated by it. Recovery of PSII from photoinactivation requires de novo protein synthesis. PSII in capsicum leaf segments were photoinactivated in the absence of chloroplast-encoded protein synthesis. At large photon exposures and despite the absence of repair, a residual fraction of PSII remained functional, being ca 0.08-0.2 depending on the ease of gas exchange in the tissue. This study revealed that the residual functional PSII was photoprotected by both (1) reaction-center quenching of excitation energy by photoinactivated PSII even when little or no PSII activity was permitted, and (2) antenna quenching, which was dependent on a trans-thylakoid pH gradient sustained mainly by linear electron transport and facilitated by the residual functional PSII complexes themselves. Significantly, little or no contribution to photoprotection of PSII was observed from cyclic electron flow around PSI. Further, the small residual functional PSII population was critical for recovery of the photoinactivated PSII complexes. Thus, photoinactivated and residual functional PSII complexes in leaves play a mutually beneficial role in each other's ultimate survival.

    Original languageEnglish
    Pages (from-to)415-424
    Number of pages10
    JournalPhysiologia Plantarum
    Volume128
    Issue number3
    DOIs
    Publication statusPublished - Nov 2006

    Fingerprint

    Dive into the research topics of 'Photoprotection of residual functional photosystem II units that survive illumination in the absence of repair, and their critical role in subsequent recovery'. Together they form a unique fingerprint.

    Cite this