Photostatistics reconstruction via loop detector signatures

J. G. Webb, E. H. Huntington

Research output: Contribution to journalArticlepeer-review

9 Citations (Scopus)

Abstract

Photon-number resolving detectors are a fundamental buildingblock of optical quantum information processing protocols. A loop detector, combined with appropriate statistical processing, can be used to convert a binary on/off photon counter into a photon-number-resolving detector. Here we describe the idea of a signature of photon-counts, which may be used to more robustly reconstruct the photon number distribution of a quantum state. The methodology is applied experimentally in a 9-port loop detector operating at a telecommunications wavelength and compared directly to the approach whereby only the number of photon-counts is used to reconstruct the input distribution. The signature approach is shown to be more robust against calibration errors, exhibit reduced statistical uncertainty, and reduced reliance on a-priori assumptions about the input state.

Original languageEnglish
Pages (from-to)11799-11812
Number of pages14
JournalOptics Express
Volume17
Issue number14
DOIs
Publication statusPublished - 6 Jul 2009
Externally publishedYes

Fingerprint

Dive into the research topics of 'Photostatistics reconstruction via loop detector signatures'. Together they form a unique fingerprint.

Cite this