Abstract
Succession has been a focal point of ecological research for over a century, but thus far has been poorly explored through the lens of modern phylogenetic and trait-based approaches to community assembly. The vast majority of studies conducted to date have comprised static analyses where communities are observed at a single snapshot in time. Long-term datasets present a vantage point to compare established and emerging theoretical predictions on the phylogenetic and functional trajectoryof communities through succession. We investigated within, and between, community measures of phylogenetic and functional diversity in a fire-prone heathland along a 21 year time series. Contrary to widely held expectations that increased competition through succession should inhibit the coexistence of species with high niche overlap, plots became more phylogenetically and functionally clustered with time since fire. There were significant directional shifts in individual traits through time indicating deterministic successional processes associated with changing abiotic and/or biotic conditions. However, relative to the observed temporal rate of taxonomic turnover, both phylogenetic and functional turnover were comparatively low, suggesting a degree of functional redundancy among close relatives. These results contribute to an emerging body of evidence indicating that limits to the similarity of coexisting species are rarely observed at fine spatial scales.
Original language | English |
---|---|
Article number | 20142102 |
Journal | Proceedings of the Royal Society B: Biological Sciences |
Volume | 281 |
Issue number | 1797 |
DOIs | |
Publication status | Published - 5 Nov 2014 |