Abstract
Eucalyptus bosistoana F. Muell. is valued for its naturally durable heartwood. As part of an E. bosistoana breeding programme, we have tested the hypothesis that there is a prolonged transition from sapwood to heartwood in young trees, resulting in a wide transition zone. This needs to be considered when assessing trees for heartwood quantity and quality. Heartwood formation was investigated in radial profiles in cores from bark to bark of 6-year-old trees with conventional and confocal microscopy, and with a range of different staining techniques that visualised the physiological changes taking place in the parenchyma cells. Using immunolabelling with antibodies against histone proteins and α-Tubulin, histochemical staining using potassium iodide (I3-KI) and fluorescence emission spectral scanning, we demonstrated that in heartwood nuclei, microtubules, reserve materials (starch) and vacuoles were absent. The observations revealed that 6-year-old E. bosistoana trees contained heartwood. The loss of water conductivity by tyloses formation and the death of the parenchyma cells occurred in close proximity resulting in a transition zone of ∼1 cm.
Original language | English |
---|---|
Pages (from-to) | 382-394 |
Number of pages | 13 |
Journal | IAWA Journal |
Volume | 39 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2018 |
Externally published | Yes |