Pinocchio against the Semantic Hierarchies

Peter Eldridge-Smith*

*Corresponding author for this work

    Research output: Contribution to journalArticlepeer-review

    4 Citations (Scopus)

    Abstract

    The Liar paradox is an obstacle to a theory of truth, but a Liar sentence need not contain a semantic predicate. The Pinocchio paradox, devised by Veronique Eldridge-Smith, was the first published paradox to show this. Pinocchio’s nose grows if, and only if, what Pinocchio is saying is untrue (the Pinocchio principle). What happens if Pinocchio says that his nose is growing? Eldridge-Smith and Eldridge-Smith (Analysis, 70(2): 212-5, 2010) posed the Pinocchio paradox against the Tarskian-Kripkean solutions to the Liar paradox that use language hierarchies. Eldridge-Smith (Analysis, 71(2): 306-8, 2011) also set the Pinocchio paradox against semantic dialetheic solutions to the Liar. Beall (2011) argued the Pinocchio story was just an impossible story. Eldridge-Smith (Analysis, 72(3): 749-752, 2012b) responded that unless the T-schema is a necessary truth of some sort (logical, metaphysical or analytic), the Pinocchio principle is possible. Luna (Mind & Matter 14(1): 77–86, 2016) argues that the Pinocchio contradiction proves the principle is false. D’Agostini & Ficara (2016) discuss a more plausible physical truth-tracking trait, the Blushing Liar, and argue that the Pinocchio contradiction is not a metaphysical dialetheia. I respond to Luna, and D’Agostini & Ficara, and prove that the Pinocchio paradox is a counterexample to hierarchical solutions to the Liar.

    Original languageEnglish
    Pages (from-to)817-830
    Number of pages14
    JournalPhilosophia (United States)
    Volume46
    Issue number4
    DOIs
    Publication statusPublished - 1 Dec 2018

    Fingerprint

    Dive into the research topics of 'Pinocchio against the Semantic Hierarchies'. Together they form a unique fingerprint.

    Cite this