Plasmonic Nanostars: Unique Properties That Distinguish Them from Spherical Nanoparticles from a Biosensing Perspective

Anastasiia Tukova, Nhung Thi Tuyet Nguyen, Alfonso Garcia-Bennett, Alison Rodger, Yuling Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

Over the past three decades, plasmonic nanostructures, particularly spherical ones, have seen remarkable advancements. Recently, attention has shifted toward anisotropic nanoparticles, especially star-shaped/branched structures such as plasmonic nanostars (PNS), due to their distinct properties. PNS offers superior electromagnetic enhancement effects, larger surface areas, and as well as non-linear and unusual photothermal properties, setting them apart from spherical counterparts. Despite significant progress in synthetic methods and characterization of the particles, challenges remain in transitioning PNS technology into practical use. In this perspective article, the distinctive attributes of PNS in biosensing applications are discussed, beginning with an exploration of synthesis methodologies. Their optoelectronic properties are examined and discussed how these properties influence their interaction with different molecules from a biosensing perspective. With a focus on PNS, detailed insights are offered into their unique properties, current applications, and future potential. By fostering discussion and understanding of PNS development, this article aims to facilitate the translation of PNS technology into practical applications, encouraging targeted improvements and advancements.The perspective article provides a comprehensive overview of plasmonic nanostars (PNS), highlighting their optoelectronic properties. It discusses how PNS properties influence their interaction with different molecules from a biosensing perspective. image
Original languageEnglish
Article number2401183
Pages (from-to)1-14
Number of pages14
JournalAdvanced Optical Materials
Volume12
Issue number28
DOIs
Publication statusPublished - 4 Oct 2024

Fingerprint

Dive into the research topics of 'Plasmonic Nanostars: Unique Properties That Distinguish Them from Spherical Nanoparticles from a Biosensing Perspective'. Together they form a unique fingerprint.

Cite this