TY - GEN
T1 - Playing for Benchmarks
AU - Richter, Stephan R.
AU - Hayder, Zeeshan
AU - Koltun, Vladlen
N1 - Publisher Copyright:
© 2017 IEEE.
PY - 2017/12/22
Y1 - 2017/12/22
N2 - We present a benchmark suite for visual perception. The benchmark is based on more than 250K high-resolution video frames, all annotated with ground-truth data for both low-level and high-level vision tasks, including optical flow, semantic instance segmentation, object detection and tracking, object-level 3D scene layout, and visual odometry. Ground-truth data for all tasks is available for every frame. The data was collected while driving, riding, and walking a total of 184 kilometers in diverse ambient conditions in a realistic virtual world. To create the benchmark, we have developed a new approach to collecting ground-truth data from simulated worlds without access to their source code or content. We conduct statistical analyses that show that the composition of the scenes in the benchmark closely matches the composition of corresponding physical environments. The realism of the collected data is further validated via perceptual experiments. We analyze the performance of state-of-the-art methods for multiple tasks, providing reference baselines and highlighting challenges for future research.
AB - We present a benchmark suite for visual perception. The benchmark is based on more than 250K high-resolution video frames, all annotated with ground-truth data for both low-level and high-level vision tasks, including optical flow, semantic instance segmentation, object detection and tracking, object-level 3D scene layout, and visual odometry. Ground-truth data for all tasks is available for every frame. The data was collected while driving, riding, and walking a total of 184 kilometers in diverse ambient conditions in a realistic virtual world. To create the benchmark, we have developed a new approach to collecting ground-truth data from simulated worlds without access to their source code or content. We conduct statistical analyses that show that the composition of the scenes in the benchmark closely matches the composition of corresponding physical environments. The realism of the collected data is further validated via perceptual experiments. We analyze the performance of state-of-the-art methods for multiple tasks, providing reference baselines and highlighting challenges for future research.
UR - http://www.scopus.com/inward/record.url?scp=85041894050&partnerID=8YFLogxK
U2 - 10.1109/ICCV.2017.243
DO - 10.1109/ICCV.2017.243
M3 - Conference contribution
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 2232
EP - 2241
BT - Proceedings - 2017 IEEE International Conference on Computer Vision, ICCV 2017
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 16th IEEE International Conference on Computer Vision, ICCV 2017
Y2 - 22 October 2017 through 29 October 2017
ER -